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Motivation



Motivation: examples of compositional models with a BNP
component

Figure: Infinite Hidden Markov
Model[Beal et al., 2002]

Figure: Hierarchical Dirichlet process
[Teh et al., 2004]

[Pictures borrowed from Zoubin’s UAI tutorial]



Mixture models



Mixture models
Let {Yi}

n
i=1 be our data. A mixture model is an example of a latent

variable model which has a single discrete latent variable per observation

Xi ∼ Categorical(π)
Yi ∣ Xi ∼ f (⋅ ∣ θxi ).

Under the discrete distribution

P(Xi = j) = πj , πj ≥ 0,
m

∑
j=1
πj = 1

and

P(Yi ∈ dyi) =
m

∑
j=1

P(Yi ∈ dyi ∣ Xi)P(Xi = j)

=
m

∑
j=1
πmF (dyi ∣ θj).



In order to be fully Bayesian, a prior distribution for all unknown
quantities should be incorporated

M ∼ Q

π ∣ M = m ∼ Pm

X1,⋯,Xn ∣ π
i.i.d.
∼ Categorical(π)

Yi ∣ Xi ∼ f (⋅ ∣ θXi
).

One option is to choose Q with support on N.



In order to be fully Bayesian, a prior distribution for all unknown
quantities should be incorporated

M ∼ Q

π ∣ M = m ∼ Symmetric Dirichlet(γ)

X1,⋯,Xn ∣ π
i.i.d.
∼ Categorical(π)

Yi ∣ Xi ∼ f (⋅ ∣ θXi
).

One option is to choose Q with support on N„ for instance

Q (M = m) =
η(1 − η)m−1↑

m!
, m ∈ N, η ∈ (0,1).



Chinese Restaurant process as a limit

Let us assume there is an infinite total number of components.

Set γ = θ
m

p(n1,⋯,nk ∣ M = m) =
m!m−k

(m − k)!

θkΓ(θ)

Γ(θ + n)
∏

{`∶n`>0}

Γ(n` +
θ
m
)

Γ( θ
m
+ 1)

Let m →∞

p(n1,⋯,nk) =
θkΓ(θ)

Γ(θ + n)

k

∏
`=1

Γ(n`).

We have just derived the finite dimensional distribution of a Chinese
restaurant process. [Aldous, 1985]



Infinite mixture models



Infinite mixture models

An infinite mixture model is a mixture model with potentially infinitely
many mixture components.

G ∼ Random probability measure (RPM)
Xi ∣ P ∼ P

Yi ∣ Xi ∼ FXi
.

[Lo, 1984, Rasmussen, 2000] choose G to be a Dirichlet process.



Random Probability measures

Any discrete distribution G ∶ B(X)→ [0,1] on a measurable space
(X,B(X)) can be represented as

G(B) =
∞
∑
i=1

piδzi , B ∈ B(X),
∞
∑
i=1

pi = 1.

Make the weights (Pi)i∈N and locations (Zi)i∈N random and you obtain
that G is a random probability measure.

[Laha and Rohatgi, 1979, Kingman, 1975]



The Dirichlet and Pitman–Yor Processes as a Random
Probability measure

Example 1: Dirichlet process (DP). Let (Vi)i∈N
i.i.d
∼ Beta(1, θ) and

(Zi)i∈N
i.i.d.
∼ H0 independent of (Vi)i∈N. The stick breaking construction

says

P1 = V1

Pi = Vi∏
j<i

(1 −Vj) ∀i ≥ 2

Example 2: Pitman–Yor process (PY). Let
(Vi)i∈N

ind
∼ Beta(1 − σ, θ + iσ) and (Zi)i∈N

i.i.d.
∼ H0 independent of (Vi)i∈N.

The stick breaking construction says

P1 = V1

Pi = Vi∏
j<i

(1 −Vj) ∀i ≥ 2

[Sethuraman, 1994, Pitman and Yor, 1997]



i ∈ [n]

θ

H0 G

Xi Xn+1 Xn+m . . .

Yi

Figure: Intractable graphical model of a Dirichlet process mixture model



From Intractable to tractable
representations



Clustering as a partition of the data

Partition of [n] ∶= {1,⋯,n}, n ∈ N . A partition Πn = {A1,⋯,A∣Πn ∣} of
the first n integers set [n], n ∈ N is a finite collection of ∣Πn∣ non-empty,
non-overlapping and exhaustive subsets of [n] called blocks and denoted
by Aj , j = 1,⋯, ∣Πn∣, i.e.
1. ∅ ⊂ Aj ⊆ [n],∀j = 1,⋯, ∣Πn∣.
2. Ai ∩Aj = ∅, ∀i , j ∈ [n], i ≠ j .

3. ⋃∣Πn ∣
j=1 Aj = [n].

∣Πn∣ is the cardinality or number of blocks of the partition.

A Chinese restaurant process is a distribution over partitions of N
whose finite dimensional distributions, called Exchangeable random
probability functions (EPPF), have a particular form.



Family of Gibbs-type random partitions

An exchangeable random partition Π of the set of natural numbers N is
said to be of Gibbs form with parameter σ ∈ [−∞,1) if the EPPF of Πn,
n ∈ N satisfies

p(Πn = π) = Vn,k ∏
A∈π

Γ(∣A∣ − σ)

Γ(1 − σ)

∀k ∈ {1,⋯,n}. It depends only on n: the number of observations, k : the
number of blocks and the sizes of each block in the partition.



i 2 [n] c 2 ⇡

✓ �

⇧ H0

Yi X⇤
c

Figure: Tractable graphical model of a two parameter Chinese restaurant
mixture model



First SMC sampler



Urn sequential construction

The predictive distribution of Gibbs type priors with parameter
σ ∈ (−∞,1) is given by

Pr (Xn+1 ∈ ⋅ ∣ X1⋯,Xn) =
Vn+1,k+1

Vn,k
H0(⋅) +

Vn+1,k

Vn,k

k

∑
`=1

(n` − σ)δX∗

`
(⋅).

Finite number of total components case, σ < 0, and

Vn,k =
∞
∑
m=1

∣σ∣k
mΓ(m)

Γ(m − k + 1)
Γ(m∣σ∣)

Γ(m∣σ∣ + n)
Q(m)

Infinite number of total components case, σ ∈ (0,1), and

Vn,k = ∫
R+

σk

Γ(n − σk)
(t−σ)k ∫

1

0
pn−σk−1fσ ((1 − p)t)dph(t)dt



SMC proposal and incremental weight

Pr (i joins cluster c’ ∣ Π`i−1,y1∶i−1)

∝

⎧⎪⎪
⎨
⎪⎪⎩

Vn+1,k
Vn,k

f (yi) ∣ {yj}j∈c ′) if c ′ ∈ Π`i−1
Vn+1,k+1
Vn,k

f (yi) o.w.

⎫⎪⎪
⎬
⎪⎪⎭

where

f (yi) = ∫ f (y i
∣ θ)H0(dθ)

f (yi) ∣ {yj}j∈c) = ∫ f (y i
∣ θ) f (θ ∣ {yj}j∈c)dθ,

and the incremental weight is

p (yi ∣ Π`i ,y1∶i−1)

=
Vn+1,k+1

Vn,k
f (y i

) + ∑
c∈Π`

i

Vn+1,k

Vn,k
f (y i

∣ {yj}j∈c).



i ∈ [n]

c ∈ [π]

hT T ρ

H0 Π

X∗c J̃c T −∑|π|
`=1 J̃`

Yi

Figure: Tractable graphical model with additional auxiliary variables for an
infinite mixture model



Auxiliary SMC sampler
[Lomeli, 2017] for Gibbs type priors, [Griffin, 2011] for Normalised
Random Measure mixture models



Auxiliary SMC proposal and incremental weight

Pr
⎛
⎜
⎝
i joins cluster c’ ∣ Π`i−1,y1∶i−1,{J̃k ∈ dsk}

∣Π`
i−1∣

k=1 ,T − ∑
`≤∣Π`

i−1∣
J̃` ∈ dv

⎞
⎟
⎠

∝

⎧⎪⎪
⎨
⎪⎪⎩

sc ′ f (yi) ∣ {yj}j∈c ′) if c ′ ∈ Π`i−1

vf (yi) o.w.

⎫⎪⎪
⎬
⎪⎪⎭

and the incremental weight is

p
⎛
⎜
⎝
yi ∣ Π`i ,y1∶i−1,{J̃k ∈ dsk}

∣Π`
i−1∣

k=1 ,T − ∑
`≤∣Π`

i−1∣
J̃` ∈ dv

⎞
⎟
⎠

=
v

t
f (y i

) + ∑
c∈Π`

i

sc
t
f (y i

∣ {yj}j∈c).



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T

For the `-th particle, in the PY process case,
T ` ∼ Polynomially tilted Stable(θ,Sσ), Sσ is a σ-Stable random variable.

[Devroye, 2009, Hofert, 2011]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − J̃1

The `-th particle (with no resampling step):
Π`1 = {{1}}, S` = [J̃1], V ` = T − J̃1.
[Lomeli, 2017]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − J̃1

The `-th particle (with no resampling step):
Π`2 = {{1,2}}, S` = [J̃1], V ` = T − J̃1.
[Lomeli, 2017]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − J̃1

The `-th particle (with no resampling step):
Π`3 = {{1,2,3}}, S` = [J̃1], V ` = T − J̃1.
[Lomeli, 2017]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − J̃1

[Lomeli, 2017]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − ∑2
`=1 J̃`

The `-th particle (with no resampling step):
Π`4 = {{1,2,3} ,{4}}, S` = [J̃1, J̃2], V ` = T − J̃1 − J̃2.
[Lomeli, 2017]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − ∑2
`=1 J̃`

The `-th particle (with no resampling step):
Π`5 = {{1,2,3} ,{4,5}}, S` = [J̃1, J̃2], V ` = T − J̃1 − J̃2.
[Lomeli, 2017]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − ∑2
`=1 J̃`

[Lomeli, 2017]



SMC sampler: cluster assignment step

J̃1

3

1

2 J̃2

4

5

J̃3

6

T − ∑3
`=1 J̃`

The `-th particle (with no resampling step):
Π`6 = {{1,2,3} ,{4,5} ,{6}}, S` = [J̃1, J̃2, J̃3], V ` = T − J̃1 − J̃2 − J̃3.
[Lomeli, 2017]



With a resampling step

V 1
1 = T 1

1 V 1
2 = T 1

1 V 1,2
3 = T 1

1 V 1
4 = T 1

1 � J̃1
1

⇧1
1 = {{1}} ⇧1

2 = {{1, 2}} ⇧1
3 = {{1, 2, 3}} ⇧1

4 = {{1, 2, 3} , {4}}

S1 = [ ] S1 = [ ] S1,2 = [ ] S1 =
h
J̃1

1

i

1 1 1 1

V 2
1 = T 2

1 V 2
2 = T 2

1 � J̃2
1 V 2

4 = T 1
1 � J̃

02
1

⇧2
1 = {{1}} ⇧2

2 = {{1} , {2}} ⇧2
4 = {{1, 2, 3} , {4}}

S2 = [ ] S2 =
h
J̃2

1

i
S2 =

h
J̃

02
1

i

2 2 2

V 3
1 = T 3

1 V 3
2 = T 3

1 V 3
3 = T 3

1 V 3
4 = T 3

1

⇧3
1 = {{1}} ⇧3

2 = {{1, 2}} ⇧3
3 = {{1, 2, 3}} ⇧3

4 = {{1, 2, 3, 4}}

S3 = [ ] S3 = [ ] S3 = [ ] S3 = [ ]

3 3 3 3

1

[Lomeli, 2017]



Marginal likelihood computations

An advantage about using an SMC scheme is that the marginal likelihood
can be directly estimated from the output by

n

∏
i=1

1
L

L

∑
p=1

wp
i .

This quantity is useful to construct a Bayes factor test.



Bayes factors

The Bayes factor allows us to compare the predictions made by two
competing scientific theories represented by two statistical models.

BF =
p(D ∣M1)

p(D ∣M2)

where

p(D ∣Mk) = ∫ p(D ∣Mk , φk)f (φk ∣Mk)dφk , k = 1,2.

where D = (y1,⋯, yn) is our data,M1 is model one,M2, model two; φk
is the parameter under the hypothesis or competing modelMk , k = 1,2
and f (φk ∣Mk) is its corresponding prior density.

[Jeffreys, 1935, Kass and Raftery, 1995, Robert, 2001]



Results



Bayes Factor
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Figure: There is evidence in favour of the finite mixture model with random
number of total components.



Conclusions

▸ From intractable to tractable representations useful for constructing
inference schemes.

▸ SMC is a useful and general algorithm for inference in complex
models.

▸ The SMC sampler presented is for a subclass of σ-Stable
Poisson–Kingman mixture models. We have two other SMC
samplers for Gibbs-type mixture models that were not covered here:
one is an example of pseudo marginal MCMC and the other an
approximate SMC scheme that encompasses all Gibbs type priors.
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Π`
1 = {{1}} ,∀` ∈ {1,⋯,L}

Sample T=GenerallyTiltedStable(ht , σ,L),
J̃1=ExactSampleNewTableSize(T , σ,L)
for i = 2 ∶ n do

for ` = 1 ∶ L do
Set c ′ according to

Pr(i joins cluster c’ ∣ Π`
i−1, y1∶i−1,{J̃k ∈ dsk}

∣Π`
i−1 ∣

k=1 ,T −∑`≤∣Π`
i−1 ∣

J̃` ∈ dv)
if ∣c ′∣ = 1 then

Π`
i = Π`

i−1 ∪ {{i}}
J̃∣Π`

i
∣=ExactSampleNewTableSize(V ∶= T −∑`≤∣Π`

i−1 ∣
J̃`, σ)

V = V − J̃∣Π`
i
∣

else
c ′ = c ′ ∪ {i} , c ′ ∈ Π`

i−1
Π`

i = Π`
i−1

end if

w `
i ∝ w `

i−1 × p (yi ∣ Π`
i , y1∶i−1,{J̃k ∈ dsk}

∣Π`
i−1 ∣

k=1 ,T −∑`≤∣Π`
i−1 ∣

J̃` ∈ dv)
end for
Normalise the weights w̃ `

i =
w`
i

∑L
j=1 w j

i

if ESS< thresh × L then
Resample `′ ∼Multinomial (w̃1

i ,⋯, w̃L
i ) ,∀` ∈ {1,⋯,L}, Π`

i = Π`′

i

end if
end for



Algorithm Running time(±std) log-Marginal likelihood(±std)
PY(θ = 10, σ = 0.5)
StandardVanillaSMC 377.927 (35.29) -294.622 (0.76)

StandardSMC 445.839 (15.65) -292.704 (0.65)
VanillaSMC I 663.909 (39.36) -297.865 (1.45)

SMC I 649.042 (32.03) -298.129 (0.86)
ApproxVanillaSMC 543.429 (40.53) -299.966 (0.50)

AproxSMC 420.818 (23.38) -295.093 (0.47)
NGG(τ = 20, σ = 0.5)

VanillaSMC I 417.735 (13.60) -286.591 (0.14)
SMC I 429.590 (32.93) -286.577 (0.35)

ApproxVanillaSMC 568.531 (29.29) -299.149 (0.02)
ApproxSMC 511.341 (21.18) -297.107 (0.13)

MFM(M ∼ Gnedin(γ = 0.5))
VanillaSMC III 433.536 (135.82) -276.129 (0.77)

SMC III 412.625 (116.99) -276.427 (0.32)

Table: Running times in seconds and log-marginal likelihood averaged over 5 runs,
10000 particles.



Size-biased and Stick breaking weights for the Pitman–Yor
process
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