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Resampling schemes: Informal definition

A resampling scheme is a randomization procedure that takes as an input a

weighted sample
{

(X n,W n)
}N

n=1 and returns as an output resampled

variables
{

X An}N
n=1, where An is a random index in {1, . . . ,N}.

A good resampling scheme should be such that

1
N

N∑
n=1

δ(X An
) ≈

N∑
n=1

W nδ(X n)

or, in words, the empirical probability measure of the resampled variables

should remain close (in some sense) to the weighted empirical measure of

the input variables.
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Motivation: Resampling, a key element of particle

filtering

It is well known that particle filters ‘collapse’ if the particles are not resampled

from time to time.

(Other applications of resampling algorithms include e.g. survey sampling and

weighted bootstrap.)
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Most commonly used resampling methods (in PF)
I Multinomial resampling:

An = F−N (Un), n = 1, . . . ,N, FN(x) =
N∑

n=1

W nI(n ≤ x)

where {Un}N
n=1 are i.i.d. U(0,1) random variables.

I Stratified resampling (Kitagawa, 1996):

An = F−N
(n − 1 + Un

N

)
, n = 1, . . . ,N

where {Un}N
n=1 are i.i.d. U(0,1) random variables.

I Systematic resampling (Carpenter et al., 1999):

An = F−N
(n − 1 + U

N

)
, n = 1, . . . ,N

where U ∼ U(0,1).
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Inverse CDF plot
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Figure 1: Function FN(x) =
∑N

n=1 W nI(n ≤ x)
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Schizophrenic Monte Carlo

In practice, We use stratified/systematic (rather than multinomial) resampling,

because these schemes are (a) a bit faster, and (b) leads to lower-variance

estimates numerically. (See next slide)

In theory, we only consider multinomial resampling, as it is so much easier to

study; indeed, resampled particles are IID, from distribution

N∑
n=1

W nδ(X n).

As a result, little is known about stratified/systematic; even wether they are

consistent or not.
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Numerical comparison of resampling schemes
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Figure 2: TV distance between empirical distributions of weighted particles, and

resampled particles as a function of τ ; particles are ∼ N(0, 1), weight function is

w(x) = exp(−τx2/2).
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Resampling schemes: Formal definition

Definition
A resampling scheme is a mapping ρ : [0,1]N ×Z → Pf (X ) such that, for any

N ≥ 1 and z = (xn,wn)N
n=1 ∈ ZN ,

ρ(u, z) =
1
N

N∑
n=1

δ(xan
N (u,z)),

where for each n, an
N : [0,1]N ×ZN → 1 : N is a certain measurable function.

Notation:

1. X ⊆ Rd is a measurable set.

2. P(X ) is the set probability measures on X .

3. Pf (X ) is the set of discrete probability measures on X .

4. Z :=
⋃+∞

N=1ZN with ZN =
{

(x ,w) ∈ XN × RN
+ :

∑N
n=1 wn = 1

}
.
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Consistent resampling schemes
We consider in this work that a resampling scheme is consistent if it is

weak-convergence-preserving.

Definition

Let P0 ⊆ P(X ). Then, we say that a resampling scheme ρ : [0,1]N ×Z → Z is

P0-consistent if, for any π ∈ P0 and random sequence (ζN)N≥1 such that

πN ⇒ π, P-a.s., one has

ρ(ζN)⇒ π, P− a.s.

Remarks:

1. All the random variables are defined on the probability space (Ω,F ,P).

2. ζN is a r.v. that takes its value in ZN and πN ∈ Pf (X ) is the corresponding

probability measure: ζN = (W n,X n)N
n=1, πN =

∑N
n=1 W nδ(X n).

3. It is well known that multinomial resampling is P(X )-consistent.
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A general consistency result: Preliminaries

I To simplify the presentation we assume henceforth that X = Rd .

I A collection of random variables (Z n)N
n=1 are negatively associated (NA)

if, for every pair of disjoint subsets I1 and I2 of {1, . . .N},

Cov
(
ϕ1
(
Z n,n ∈ I1

)
, ϕ2

(
Z n,n ∈ I2

))
≤ 0

for all coordinatewise non-decreasing functions ϕ1 and ϕ2, such that for

k ∈ {1,2}, ϕk : R|Ik | → R and such that the covariance is well-defined.

I Let P̃b(X ) ⊂ P(X ) be a set of probabilities densities with "not too thin

tails" (see paper for exact definition).
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Main result

Theorem (X = Rd to simplify)
Let ρ : [0,1]N ×Z → Pf (X ) be an unbiased resampling scheme such that:

1. For any N ≥ 1 and z ∈ ZN the collection of random variables{
#n
ρ,z :=

∑N
m=1 I(Am = n)

}N
n=1 is negatively associated;

2. There exists a sequence (rN)N≥1 of non-negative real numbers such that

rN = O(N/ log N), and, for N large enough,

sup
z∈ZN

N∑
n=1

E
[
(∆n

ρ,z)2] ≤ rN N,
∞∑

N=1

sup
z∈ZN

P
(

max
n∈1:N

∣∣∆n
ρ,z

∣∣ > rN

)
< +∞.

Then, ρ is P̃b(X )-consistent.

Notation: ∆n
ρ,z = #n

ρ,z − NW n.

Definition: ρ is unbiased if E
[
∆n
ρ,z
]

= 0 for all n and z ∈ Z.
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Applications

From the previous theorem we deduce the following corollary:

Corollary
I Multinomial resampling is P̃b(X )-consistent (not new);

I Residual resampling is P̃b(X )-consistent (not new);

I Stratified resampling is P̃b(X )-consistent (new!);

I Residual/Stratified resampling is P̃b(X )-consistent (new!);

I SSP resampling is P̃b(X )-consistent (new!, see next slides).

Remark: This corollary shows that the negative association condition of the

theorem holds for resampling schemes producing a set of resampled values

{X An}N
n=1 having very different properties.
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Resampling as a randomized rounding operation

Definition
For ξ ∈ R+, the random variable Y : Ω→ N is a randomized rounding of ξ if

P
(
Y = bξc+ 1

)
= ξ − bξc, P

(
Y = bξc

)
= 1−

(
ξ − bξc

)
.

Any randomized rounding technique that takes as input a vector

(ξ1, . . . , ξN) ∈ RN
+ returns as output a random vector (Y 1, . . . ,Y N) ∈ NN

verifying

N∑
n=1

Y n =
N∑

n=1

ξn, P− almost surely

may be used to construct an unbiased resampling mechanism.

12 / 23



Resampling as a randomized rounding operation

Definition
For ξ ∈ R+, the random variable Y : Ω→ N is a randomized rounding of ξ if

P
(
Y = bξc+ 1

)
= ξ − bξc, P

(
Y = bξc

)
= 1−

(
ξ − bξc

)
.

Any randomized rounding technique that takes as input a vector

(ξ1, . . . , ξN) ∈ RN
+ returns as output a random vector (Y 1, . . . ,Y N) ∈ NN

verifying

N∑
n=1

Y n =
N∑

n=1

ξn, P− almost surely

may be used to construct an unbiased resampling mechanism.

12 / 23



Systematic resampling as a rounding operation

Systematic resampling is an example of resampling scheme constructed in

this way.

However, it is hard to analyse because the underlying rounding process is

such that the dependence structure of the output depends on the way we

order the input point set.

In addition, it is easy to show that the collection of offspring numbers

{#n
ρ,z}N

n=1 produced by systematic resampling is in general not NA.
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SSP resampling as a “valid” version systematic

resampling

The SSP (for Srinivasan Sampling Process) resampling scheme is based on

Srinivasan’s (2001) randomized rounding technique.

This resampling mechanism requires N − 1 uniform random variables in [0,1]

and O(N) operations (as all the other resampling schemes mentioned above).

SSP resampling satisfies the negative association condition of our general

consistency result (as well as the other conditions) and is therefore

P̃b(X )-consistent.
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Basic idea behind of SSP

Start with Y n = NW n for n = 1, . . . ,N. Take a pair, say Y 1 = 3.7, Y 2 = 2.2.

I With probability p, increase both, by amount 0.3: then Y 1 is 4.

I With probablity (1− p), decrease both, by amount 0.2; then Y 2 is 2.

(Choose p so that the scheme remains unbiased: p = 2/5.)

Pair the particle with a fractional weight with another particle, and start over.
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Very vague sketch of the proof

In a first step, we show that consistency is equivalent to a certain condition on

the set of points, when ordered through the Hilbert curve.

In a second step, we use the NA condition to show that the same technical

condition holds whatever the order of the input points.
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The Hilbert space filling curve
The Hilbert space filling curve H : [0,1]→ [0,1]d is a continuous and

surjective mapping.

It is defined as the limit of a sequence (Hm)m≥1

First six elements of the sequence (Hm)m≥1 for d = 2 (source: Wikipedia)
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Motivation: Kitagawa’s Conjecture

Using simulations, Kitagawa (1996) noticed the following.

Conjecture (Kitagawa, 1996)
Assume X = R (i.e. d = 1). Then, if the point {X n}N

n=1 are ordered before the

resampling, The approximation error of stratified resampling is of size

OP(N−1);

Is this true? does it generalize to d > 1?
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Variance of Hilbert-ordered stratified resampling
Theorem (X = Rd to simplify)

Let π ∈ P̃b(X ) be such that π(dx) = p(x)λd (dx) where p(x) is strictly positive

on X , and (ζN)N≥1, with ζN ∈ ZN , such that

N∑
n=1

W n
NδX n

N
⇒ π, lim

N→+∞

(
max
n∈1:N

W n
N

)
= 0, P− a.s.

Then, the Hilbert ordered stratified resampling scheme ρ∗strat is such that

1. For any ϕ ∈ Cb(X ), Var
(
ρ∗strat(ζ

N)(ϕ)
)

= O(1/N).

2. If ϕ : X → R is such that, for constants Cϕ,ψ < +∞ and γ ∈ (0,1],∣∣ϕ ◦ ψ−1(x)− ϕ ◦ ψ−1(y)
∣∣ ≤ Cϕ,ψ‖x − y‖γ2 , ∀(x , y) ∈ (0,1)d

we have Var
(
ρ∗trat(ζ

N)(ϕ)
)
≤
(
2
√

d + 3
)2γC2

ϕ,ψN−1− γ
d .

3. For ϕ as in 2., Var
(
ρ∗strat(ζ

N)(ϕ)
)

= O
(
N−1− γ

d
)

if X = [a,b] ⊂ Rd .
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CLT

N1/2

(
N∑

n=1

W n
t ϕ(X n

t )−Qt (ϕ)

)
⇒ N (0,Vt (ϕ))

where the asymptotic variances are defined recursively:

Vt [ϕ] =
1
`2

t
Ṽt [Gt {ϕ− πt (ϕ)}]

V̂t [ϕ] = Vt [ϕ] + Rt (ρ, ϕ)

Ṽt+1 [ϕ] = V̂t [Mt+1(ϕ)] + πt [Vt+1(ϕ)]

We proved that Rt (ϕ) = 0 for the Hilbert-ordered version of stratified

resampling. (It is > 0 for multinomial and residual, see C, 2004).

Note: also optimality results for the auxiliary weight function of the APF, where

the optimal function depends on the resampling scheme.
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Set-up

Following Guarniero et al. (2016), we consider the linear Gaussian

state-space models where X0 ∼ Nd (0, Id ), and, for t = 1, . . . ,T ,

Xt = FXt−1 + Vt , Vt ∼ Nd (0, Id ),

Yt = Xt + Wt , Wt ∼ Nd (0, Id ),

with F = (α|i−j|+1)i,j=1:d , and α = 0.4.

We compare below particle filter algorithms based on (i) stratified resampling,

(ii) Hilbert-ordered stratified resampling and (iii) SSP resampling.

Results are presented for the bootstrap particle filter and for the particle filter

based on a guided proposal distribution.

We take d = 5, T = 500 and N = 213.
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Results (log-likelihood estimation)
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Figure 3: Estimation of the log-likelihood function as a function of t . The left (resp. right) plot
gives the variance of SMC based on stratified resampling divided by that of SMC based on
Hilbert-ordered stratified resampling (resp. unordered SSP resampling). Continuous lines are for
SMC based on the guided proposal while the dotted line is for the bootstrap particle filter. Results
are based on 1 000 independent runs of the algorithms.
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Summary

We established a general consistency result for resampling schemes

satisfying a negative association condition.

We showed how this result can be used to prove the validity of some of the

most commonly used resampling mechanisms in SMC.

However, the consistency of systematic resampling applied on randomly

ordered point set remains an open problem (but it is worth addressing it?).

Lastly, we showed that sorting the particles along the Hilbert curve allows to

build (i) resampling schemes that converge faster than N−1/2 and (ii)

convergent deterministic resampling mechanisms.
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