Exercises for Tutorial 1

Carl Leonardsson Jari Stenman
2013-09-06

Exercises

1. For each of the following claims, decide whether it is true or false, and argue for your position. Some claims are marked (*). For these claims, if you argue that they are true, then find values for the constants in the definition of O, Θ, Ω (i.e. constants c, c_1, c_2, n_0).

(a) $f(n) = \Omega(2f(n))$
(b) $2n = O(n^2)$
(c) $n^2 + n = O(n^2)$ (*)
(d) $n^3 = O(1000n^2)$ (*)
(e) $n \log n = \Theta(n)$ (*)
(f) $n + \log n = \Theta(n)$ (*)
(g) $n \log n = O(n^2)$
(h) $f(n) = O(g(n))$ iff $g(n) = \Omega(f(n))$
(i) $f(n) = \Theta(g(n))$ and $g(n) = \Theta(f(n))$ implies $f(n) = g(n)$
(j) $f(n) = g(n)$ implies $f(n) = \Theta(g(n))$ and $g(n) = \Theta(f(n))$
(k) $f(n) = \Theta(n^k)$ assuming $f(n)$ is a k:th degree polynomial.

2. Can you find a function $f(x)$ such that $2 + \sin(x) = O(f(x))$? How about $2 + \sin(x) = \Theta(f(x))$ and $2 + \sin(x) = \Omega(f(x))$?

3. Use induction to prove that $T(n) = 2^n + 1$ for all $n \geq 0$ where

$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2^n + T(n-1) & \text{if } n > 0 \end{cases}$$

4. Guess a closed form for $T(n)$, and use induction to prove that it coincides with the recursive definition for $n \geq 0$:

$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n-1) + n - 1000 & \text{if } n > 0 \end{cases}$$

Hint: To guess a closed form, remember the induction examples from the lectures.
5. Consider sorting \(n \) numbers stored in array \(A \) by first finding the smallest element of \(A \) and exchanging it with the element in \(A[1] \). Then find the second smallest element of \(A \), and exchange it with \(A[2] \). Continue in this manner for the first \(n-1 \) elements of \(A \). Write pseudocode for this algorithm, which is known as selection sort. Why does it need to run for only the first \(n-1 \) elements, rather than for all \(n \) elements? Give the best-case and worst-case running times of selection sort in \(\Theta \)-notation. [CLRS 2.2-2 (2nd ed)]

6. What loop invariant does selection sort maintain? [CLRS 2.2-2 (2nd ed)]

7. How can we modify almost any algorithm to have a good best-case running time? [CLRS 2.2-4 (2nd ed)]

Definitions of O, \(\Theta \), \(\Omega \) notation

From the lecture notes:

- **O-notation**
 For a given function \(g(n) \), we denote by \(O(g(n)) \) the set of functions \(f(n) \) such that there are constants \(c > 0 \) and \(n_0 > 0 \) such that:
 \[
 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0
 \]

- **\(\Theta \)-notation**
 For a given function \(g(n) \), we denote by \(\Theta(g(n)) \) the set of functions \(f(n) \) such that there are constants \(c_1 > 0 \), \(c_2 > 0 \), and \(n_0 > 0 \) such that:
 \[
 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n \geq n_0
 \]

- **\(\Omega \)-notation**
 For a given function \(g(n) \), we denote by \(\Omega(g(n)) \) the set of functions \(f(n) \) such that there are constants \(c > 0 \) and \(n_0 > 0 \) such that:
 \[
 0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0
 \]

Recall that \(f(n) = O(g(n)) \) is common notation abuse for \(f(n) \in O(g(n)) \). Similarly for \(\Theta \) and \(\Omega \).