Computing Systems: Research Challenges Ahead
The HiPEAC Vision 2011/2012

http://www.hipeac.net/roadmap
HiPEAC = High-Performance Embedded Architecture and Compilers
-- an EU FP7 Network of Excellence --
HiPEAC Roadmaps

http://www.hipeac.net/roadmap
(these slides are a short version of the HiPEAC presentation)
Part of the HiPEAC roadmap is required reading for AVDARK

You will find it and other required reading in the "Extra course papers" directory.

As specified in the "Reading instructions":
- page 2-33 required reading
- page 34-40 read-through (RT)
Computing Systems: Cornerstone of our civilization

- Energy
- Transport and mobility
- Health
- Aging population
- Environment
- Productivity
- Safety
- Security
- Education
Trends influencing Computing Systems

Application Pull

- Data Deluge
- Intelligent Processing
- Ubiquitous Communication

Business Trends

- Convergence
- Specialization
- Post-PC Devices
Data Deluge

The "data deluge" gap

Data Growth vs. Moore's Law

2006 2007 2008 2009 2010
Growth of data storage in Exabytes

Intelligent processing of “natural” data

More and more applications are not only “number crunching”

Recognition, Mining, Synthesis

Implicit and natural computing

Posture: Lying Down

Source: “The Landscape of Parallel Computing Research: A View from Berkeley”
Krste Asanovic et al.
Ubiquitous computing in a connected world

Infrastructure Core (cloud)

Sensory swarm, actuators and real world data

Smart house cities, …

Mobile access

Courtesy Jan M. Rabaey, UC Berkeley, updated for this HiPEAC vision
Trends influencing Computing Systems

<table>
<thead>
<tr>
<th>Application Pull</th>
<th>Business Trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Data Deluge</td>
<td>• Convergence/standards</td>
</tr>
<tr>
<td>• Intelligent Processing</td>
<td>• Specialization</td>
</tr>
<tr>
<td>• Ubiquitous Communication</td>
<td>• Post-PC Devices</td>
</tr>
</tbody>
</table>
Convergence

- Business models
- Standard(s)
- Interoperability
- ...

Broadcast

IP, Internet

Telecom

MacBook image © Jared C. Benedict
Phone, TV images © LG Electronics
Post-PC devices

Ubiquitous access
PC Market

Western Europe: PC Vendor Unit Shipment Estimates for 2Q11 (Thousands of Units)

<table>
<thead>
<tr>
<th>Vendor</th>
<th>2Q11 Shipments</th>
<th>2Q11 Market Share (%)</th>
<th>2Q10 Shipments</th>
<th>2Q10 Market Share (%)</th>
<th>2Q11-2Q10 Growth (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>3,171</td>
<td>25.1</td>
<td>3,376</td>
<td>21.6</td>
<td>-6.1</td>
</tr>
<tr>
<td>Acer Group</td>
<td>2,046</td>
<td>16.2</td>
<td>3,696</td>
<td>23.7</td>
<td>-44.6</td>
</tr>
<tr>
<td>Dell</td>
<td>1,371</td>
<td>10.8</td>
<td>1,571</td>
<td>10.1</td>
<td>-12.7</td>
</tr>
<tr>
<td>Asus</td>
<td>1,021</td>
<td>8.1</td>
<td>1,324</td>
<td>8.5</td>
<td>-22.9</td>
</tr>
<tr>
<td>Apple</td>
<td>879</td>
<td>7.0</td>
<td>875</td>
<td>5.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Others</td>
<td>4161</td>
<td>32.8</td>
<td>4751</td>
<td>30.5</td>
<td>-12.4</td>
</tr>
<tr>
<td>Total</td>
<td>12,649</td>
<td>100</td>
<td>15,593</td>
<td>100</td>
<td>-18.9</td>
</tr>
</tbody>
</table>

Note: Data includes desk-based PCs and mobile PCs. Media tablets are excluded. Source: Gartner (August 2011) (from http://www.gartner.com/t1/page.jsp?id=1769215)
Computing Systems: Drivers

Application pull

Business trends

Big data meets energy in an intelligent connected physical world
Efficiency
Complexity
Dependability

Technology push

Application pull

Business trends

Technological constraints

Big data meets energy in an intelligent connected physical world

Technological opportunities

Efficiency Complexity Dependability

Application pull

Business trends

Technological constraints

Big data meets energy in an intelligent connected physical world

Technological opportunities

Efficiency Complexity Dependability
Technological trends influencing Computing Systems

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Limits</td>
<td>CMOS Phonotic</td>
</tr>
<tr>
<td>Power Limits</td>
<td>Non-volatile memories</td>
</tr>
<tr>
<td>Dark Silicon</td>
<td>3D Stacking</td>
</tr>
<tr>
<td></td>
<td>New paradigms</td>
</tr>
</tbody>
</table>
Technological constraints

We are at a turning point

- Continuation of Moore’s Law
- Power limits

Dark silicon
Moore’s law: increase in transistor density

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanović.
Limited frequency increase \Rightarrow more cores

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanović.
Limitation by power density and dissipation

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanović.
Dark Silicon

Source: Krisztián Flautner “From niche to mainstream: can critical systems make the transition?”
Specialization leads to more efficiency

Source: Bill Dally, « To ExaScale and Beyond »

www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf
Locality and communications management

- In 22 nm, swapping 1 bit in a transistor has an energy cost:
 \[\sim 1 \text{ attojoule} \left(10^{-18} \text{ J} \right) \]
- Moving a 1-bit data on the silicon cost:
 \[\sim 1 \text{ picojoule/mm} \left(10^{-12} \text{ J/mm} \right) \]
- Moving a data \(10^9 \) per second (1 GHz) in silicon has a cost:
 \[1 \text{ pJ/mm} \times 10^9 \text{ s}^{-1} = \sim 1 \text{ milliwatt/mm} \]
- 64 bit bus @ 1 GHz: \(\sim 64 \) milliwatts/mm (with 100% activity)
- For 1 cm of 64 bit bus @ 1 GHz: 0.64 W/cm
- On modern chips, there are about several km of wires on chip, even with low toggle rate, this leads to several Watt/cm\(^2\)
Technological consequences

- Efficiency → locality
- Frequency limit → parallelism
- Energy efficiency → specialization

Ease of programming
Technological trends influencing Computing Systems

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Frequency Limits</td>
<td>• CMOS Phonotonic</td>
</tr>
<tr>
<td>• Power Limits</td>
<td>• Non-volatile memories</td>
</tr>
<tr>
<td>• Dark Silicon</td>
<td>• 3D Stacking</td>
</tr>
<tr>
<td></td>
<td>• New paradigms</td>
</tr>
</tbody>
</table>
Technological opportunities

Using more Physics phenomena, e.g.

Electrons for computation

Protons for storage

Photons for communication
Optical interconnects

CMOS photonic is the integration of a photonic layer with an electronic circuit.

Advantages of CMOS photonic are:
- Use of standard tools and foundry, wafer scale co-integration
- Lower energy (~100 fJ/bit), (wire: ~1 pJ/mm)
- High bandwidth (10 Gbps), Low latency (~10 ps/mm)

Source: CEA, Ahmed Jerraya
Non-volatile memories....

Example: Memristive Devices Principle

\[v = R(x,i) \cdot i \quad \frac{dx}{dt} = f(x,i) \]

Metal (M\textsubscript{x} layer)

Electrodes
- Oxide
- Solid electrolytic
- Organic material

Crossbar (University of Michigan)

Source: CEA, C. Gamrat

1 L. Chua and S. Kang, Proceedings of the IEEE, 1976
3D stacking

Multiple integration with 3D stacking...

Source: STMicroelectronics & CEA
Technology also drives us to think differently…

- Stochastic computing
- Biologically inspired computing
- Organic Computing
- Autonomous computing, Self-*

- Smart spaces (smart house, town, building, rooms,…)
- Intelligent dust (smart sensors)

- 3D stacking
- Photonic interconnect
- Non-volatile memories
- Molecular computing
- More-than-Moore
- Spintronics
- Chemical computing
- Biologically inspired cells
- Memristors
- ...
- Also silicon based!
Big data meets energy in an intelligent connected physical world

- Application pull
- Technology push
- Business trends
- Technological constraints
- Technological opportunities

Efficiency Complexity Dependability

Application pull
Technology push
Business trends
Technological constraints
Technological opportunities

Efficiency Complexity Dependability
Core Computing Systems Challenges

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Complexity</th>
<th>Dependability</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Power</td>
<td>• Parallelism</td>
<td>• Reliability</td>
</tr>
<tr>
<td>• Performance</td>
<td>• Heterogeneity</td>
<td>• Privacy</td>
</tr>
</tbody>
</table>
Improving efficiency

- Multiple performance metrics
- Power defines performance
- Communication defines performance
- Heterogeneity and accelerators to the rescue
Managing complexity

- The reign of legacy code
- Parallelism seems to be too complex for humans
- Hardware complexity

(4G is 500x more complex than 2G)
Improving dependability

- Worst case design is not an option anymore
- Systems must be built from unreliable components
- Safety and security!
Impact on Society

HiPEAC Research objectives

Big data meets energy in an intelligent connected physical world

Efficiency Complexity Dependability

Technological constraints

Technological opportunities

Application pull

Business trends

HiPEAC Strengths

HiPEAC Weaknesses

7 HiPEAC Research objectives

Application pull

Business trends

Technological constraints

Technological opportunities

Efficiency Complexity Dependability

HiPEAC Strengths

HiPEAC Weaknesses

Impact on Society

Application pull

Business trends

Technological constraints

Technological opportunities

Efficiency Complexity Dependability

HiPEAC Strengths

HiPEAC Weaknesses

Impact on Society
Impact on Society

HiPEAC Research objectives

Big data meets energy in an intelligent connected physical world

Efficiency Complexity Dependability

HiPEAC Strengths

Application pull

Technological constraints

Business trends

Technological opportunities

HiPEAC Weaknesses

7 HiPEAC Research objectives

Application pull

Business trends

Technological constraints

Technological opportunities

Efficiency Complexity Dependability

HiPEAC Strengths

HiPEAC Weaknesses

Impact on Society

Big data meets energy in an intelligent connected physical world

Efficiency Complexity Dependability

HiPEAC Strengths

Application pull

Technological constraints

Business trends

Technological opportunities

HiPEAC Weaknesses

Impact on Society
Derived HiPEAC Research Objectives

- Cost-effective software for heterogeneous multicores
- Cross-component/cross-layer optimization for design integration
- Next-generation processor cores

System complexity

Applications
- Architectures for the Data Deluge
- Reliable systems for Ubiquitous Computing

Efficiency
- Heterogeneous computing systems
- Locality and communications management
Cost-effective software for heterogeneous multicores

Frequency limit ➔ parallelism
Energy efficiency ➔ heterogeneity

Ease of programming
Detailed HiPEAC Research areas

<table>
<thead>
<tr>
<th>Parallelism and Programming Models</th>
<th>Cross-component/co-processing</th>
<th>Reliable systems for Ubiquitous Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.1. Locality Management</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.1.2. Optimizations programmer hints, tuning</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.1.3. Runtime Systems and Adaptivity</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Cross-component/co-processing</th>
<th>Reliable systems for Ubiquitous Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1. Processors, Accelerators, Heterogeneity</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.2.2. Memory Architectures</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.2.3. Interconnection Architectures</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.2.4. Reconfigurability</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compilers</th>
<th>Cross-component/co-processing</th>
<th>Reliable systems for Ubiquitous Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1. Automatic Parallelization</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.3.2. Adaptive Compilation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.3.3. Intelligent Optimization</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems Software and Tools</th>
<th>Cross-component/co-processing</th>
<th>Reliable systems for Ubiquitous Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.1. Virtualization</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.4.2. Input, Output, Storage, and Networking</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.4.3. Simulation and Design Automation Tools</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9.4.4. Deterministic Performance Tools</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Regional optimization of Efficiency, System Complexity, Dependability

Data Deluge: Energy Wall, Connected, Real world data

Turning point for Moore’s law

Technology and new devices

- Heterogeneous Computing
- Locality & communication
- Cost-effective software
- Cross component optimization
- Next generation computing
- Architecture for Data Deluge
- Reliable ubiquitous systems

Conclusion

Exiting new opportunities are ahead of us!