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Introduction

Wadler wrote the following in his 1992 Marktoberdorf
summerschool tutorial, discussing an application of monads:

“The discovery of such a simple solution comes as a surprise,
considering the plethora of more elaborate solutions that have
been proposed.
Why was this solution not discovered twenty years ago? One
possible reason is that the data types involve higher-order
functions in an essential way. The usual axiomatisation [...]
involves only first-order functions, so perhaps it did not occur to
anyone to search for an abstract data type based on
higher-order functions.
That monads led to the discovery of the solution must count as
a point in their favour.”
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Effects and Monads

4 / 52



Monads

Shall we be pure och impure? (Wadler 1992)

Haskell enjoys referential transparency because the value of an
expression depends only on its free variables. There are no
side-effects, no state, etc. Nor does it matter in what order we
evaluate an expression (the so-called Church-Rosser
property).

However, sometimes this is a limitation because we have to
explicitly give all input and output parameters (“plumbing”) and
it is preferable to have a global state. There are also other
situations where side-effects are useful ...
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Monads

Monads constitute a mechanism for putting a number of
operations in sequence, such that we know which operation
should be evaluated before other operations. This is Haskell’s
answer to “how do I handle side-effects in a purely functional
setting?” The answer is, as we shall see, to treat
computations/effects as “first-class” values with which we can
compute.
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Monad = Computational Type

We introduce monads:

Monads
Monads encapsulate effects such as state changes, variable
assignments, error handling, input and output into an abstract
datatype.

Monads are defined in Haskell using functions, datatypes, and
type classes.
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History

“The abduction of the word monad from Leibniz was aided and
abetted by the pun on monoid” (Bird).

Moggi (1989) introduced monads as a way of structuring
the denotational semantics of programming languages.
Later, Wadler (1992) popularised monads as a
programming tool for functional programming.

In fact, a monad is a mathematical notion which arises in
category theory, and is similar to a monoid (but at higher order).
However, no knowledge of categories is needed for learning
about and using monads in Haskell. Monads can safely be
understood or computational types, i.e. a monad m a should be
thought of as a computation m producing something of type a.

8 / 52



Writing an Evaluator

Consider writing a small evaluator:
If we decide to add error handling, all recursive calls must
be changed as well as the type of the program. This would
not necessarily be the case in an imperative language
(exceptions!).
If we want to add a counter that counts the number of
evaluation steps, then we cannot – like for imperative
languages – add just a global variable. Instead an integer
has to be passed around during execution, explicitly.
Adding an execution trace cannot be added whereas for
imperative languages this is just a side-effect, e.g. printing.

Let us consider these three cases (without monads).
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Basic Evaluator

We choose a simple tree structure for the terms that we will
evaluate:

data Term = Con Int | Div Term Term

Here is how we would write a program that evaluates
expressions/terms:

eval ::Term→ Int
eval (Con x) = x
eval (Div t u) = (eval t) div (eval u)
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Basic Evaluator: a problem

Haskell uses error "division by zero" which is
indistinguishable to a diverging program, although many
programs print a message on screen and abort:

>4 ‘div ‘0
∗∗∗Exception :divide by zero

We would like the evaluator to take care of such exceptional
circumstances rather than diverging or producing a run-time
error of this kind.
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Evaluator with Exceptions

Suppose, therefore, that we want better error handling. We
essentially use Maybe, but add a string in the case of Nothing
(and rename the constructors):

data M a = Raise String | Return a

Hence, given v ::M a, we have either a value of type a or an
exception.

12 / 52



Evaluator with Exceptions

An exception is “threaded” through the recursive evaluation
after being raised. Note that we do not have with this M a
mechanism to try again, merely to throw exceptions:

eval ::Term→M Integer
eval (Con n) = Return n
eval (Div a b) = case eval a of

Raise s→ Raise s
Return n→ case eval b of

Raise t → Raise t
Return m→ if m = /0

then Return (n div m)
else Raise "Division by zero"
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Evaluator with Tracing/Output

For tracing we tuple the result, i.e. we “thread” a string through
the entire evaluation, appending output as we go:

data M a = MkOut (String,a)

eval ::Term→Out Int
eval (Con x) = MkOut (line (Con a) a,a)
eval (Div a b) =

let (x ,n) = eval a
(y ,m) = eval b

in
(x ++y ++ line (Div t u) (a ‘div ‘b),a ‘div ‘b)

line ::Term→ Int →Output
line t a = "eval ("++showterm t ++") <="++showint a++"\n"
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Monads: Id, Maybe, List, State
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Monad Operations

The type class Monad is introduced, with two member functions
for each instance m a:

return ::a→m a
bind ::m a→ (a→m b)→m b
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Encapsulating Effects

Suppose m ::?→ ? is a type constructor which instantiates the
class Monad . Then

m () denotes a type () together with an effect of type m.
Example: putChar ::Char → IO () writes a character on the
screen.
a→m b denotes a function type, where the result is both a
value b and an effect of type m. I.e. the evaluation of that
function on an argument of type a not only produces a
value of type b, but also allows for an effect of type m.
Example: readn :: Int → IO String reads n characters (Bird
pg. 328).

In this sense, m a should be read as computation m yielding
result a. In this lecture we will see how function of types such
as a→m b can be composed similar to usual function
composition. This ability is what makes a monad.

17 / 52

Recap: Types and Kinds

Monomorphic types such as Int , Bool , Unit etc.
Polymorphic types such as [a], Tree a, etc.
Monomorphic instances of polymorphic types, e.g. [Int ],
Tree [Bool ].

We can view Int , Bool as nullary type constructors, whereas [ ],
Tree, etc, are unary constructors. A constructor is in fact a
function from types to types.

Int ,Bool , [Int ], [Bool ],Tree Bool ::?
[ ],Tree ::?→ ?

The symbol ? is the type of types, and is called a kind. These
higher-order types are used in Haskell together with type
classes.
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The Functor class
The Functor class demonstrates the use of high-order types:

class Functor f where
fmap :: (a→ b)→ f a→ f b

Note that f is applied here to one (type) argument, so should
have kind ?→ ?. For example:

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)

Or, using the function mapTree previously defined:

instance Functor Tree where
fmap = mapTree

Obviously, [a] is also an instance of Functor .
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The Monad class

Monads are, quite simply, instances of the following type class
(subject to a suitable set of member functions):

class Monad m where
(>>=) ::m a→ (a→m b)→m b
return ::a→m a

The operation >>= is pronounced bind and return is just return.
The idea is that >>= allows composition of effectful
computations, and return allows all ordinary values to be
injected into the effectful form in some standard way. I.e. every
value is also a value with effect m, using return.
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Monads explained

Let us stress this again: the two essential operations are >>=
(pronounced: “bind”) and return. Any instance of the class must
provide these two operations/methods:

return to give back a value without other
effects/computations carried out.
>>= to combine two computations (monads) when a value
is passed from one computation to another (note that this
is an infix binary operator in Haskell)

Note how that >>, sequence, operator simply ignores any
arguments passed from a previous computation.
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Monad and Functor Laws
Functor laws:

fmap id = id
fmap (f ◦g) = fmap f ◦ fmap g

Monad laws:

return a>>=k = k a
m >>= return = m
m >>=(λx → k x >>=h) = (m >>=k)>>=h

Note special case of last law:

m1>> (m2 >>m3) = (m1>>m2)>>m3

Connecting law:

fmap f xs = xs >>=(return ◦ f )
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Id - the trivial monad

If we understand monads as “computational types” (or the type
of an effect), then it is reasonable to expect a trivial kind of
computation, namely a computation without any effect, i.e. pure
functions:

data Id a = Id a
instance Monad Id where

return = Id
(Id x)>>= f = Id (f x)

Now x >>=(λx → f x)>>=(λy → g y) is just (g ◦ f ) x , i.e.
monads flip the arguments around in application. The result is
(up to isomorphism) just the usual functions and composition of
these. You can take this example as giving some intuition about
how monads work. In more complex examples there is some
extra information transferred between bind operations as well.
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Id is a monad

Note that a computation involving the Id is no different from a
value. Id is a monad for the following reason:

Proposition
Id as defined on the previous slide satisfies the monad laws.

This is a trivial exercise in algebraic manipulation of the
involved two definitions.
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Ids - a strictness monad

Working towards more interesting monads, we consider a
variation of Id which forces the evaluation of each computation:

instance Monad Ids where
return a = Ids a
(Ids x)>>= f = Ids (f $! x)

Using this monad we sequence computations, but we also force
each argument to be evaluated before it is passed on to the
next computation ...
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The Maybe Monad
Recall the Maybe data type:

data Maybe a = Just a
| Nothing

It is both a Functor and a Monad by default in the Prelude:

instance Monad Maybe where
Just x >>=k = k x
Nothing >>=k = Nothing
return x = Just x
fail s = Nothing

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

We can check that the monad laws are satisfied by these
definitions, i.e. that >>= is “associative” and return “unit”.
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More Maybe

Suppose you have written some Haskell code for
f ::a→Maybe b and g ::b→Maybe c, similar to the evaluator
we saw in the beginning with exceptions:

case (f x) of
Nothing→ Nothing
Just y = case (g y) of

Nothing→ Nothing
Just z→ Just z

The fact that Maybe is a Monad instance, means that we can
write this code much more concisely, structuring the program
after the effect it produces. In this case, the effect is a potential
failure to compute a value.
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More Maybe

f x >>=λy →
g y >>=λz→

return z

Or more concisely:

f x >>=g

Compare this to ordinary composition g (f x) = (g ◦ f ) x (which
would not work here since the types are wrong). Note that

these two expressions are equal (assuming we have a monad,
i.e. we have proved the monad laws). The proof requires
monad laws and also relies on the validity of an “eta rule”
λy → g y = g (c.f. extensionality)
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Even more Maybe

But often programmers prefer a concise notation. So we are
allowed to write the following instead, which translates to the
previous code:

do u← f x
z← g y
return z

But what does this do syntax mean more precisely?
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do-notation

Monads can be used in Haskell to emulate imperative
programming. In fact, a special notation, known as do-notation,
is designed to allow precisely this (Peyton Jones and Wadler,
1993).

It is important to stress that monads are by themselves not an
extension of the language as such. Rather it is a set of
definitions of functions, datatypes, and type classes, serving a
particular purpose, plus the extra syntactic sugar for do
notation to allow nice sequencing of computations.
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do-notation example

First do the “command” putStr (and do not collect its result),
next do getChar , binding the value produced by that command
to the variable c, finally return the value c as a result from the
whole computation.

test = do putStr "Hello"
c← getChar
return c

If c ::a, then test :: IO a in this example. Note that we do not

need to use return here – this should be intuitively clear since
return gives no effect.
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Syntactic sugar for monads

The “do” syntax in Haskell is shorthand for Monad operations,
as captured by these rules:

1. do e è e
2. do e1;e2; ...;en è e1 >>do e2; ...;en

3. do pat ← e1; ....;en è
let ok pat = do e2; ...;en

ok = fail "..."
in e1 >>=ok

4. do let decllist ;e2; ...;en è let decllist in do e2; ...;en

Note the following special case:
3a. do x ← e1;e2; ...en è e1 >>=λx → do e2; ...;en
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do-notation desugared

“do” syntax can be completely eliminated using these rules:

do putStr "Hello"
c← getChar
return c

putStr "Hello">> -- by rule (2)
do c← getChar

return c
putStr "Hello">> -- by rule (3a)
getChar >>=λc→ do return c
putStr "Hello">> -- by rule (1)
getChar >>=λc→ return c
putStr "Hello">> -- by currying
getChar >>= return
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The Monad Laws using do-notation

do x ← return a;k x = k a
do x ←m; return x = m
do x ←m;y ← k x ;h y = do y ← (do x ←m;k x);h y
do m1;m2;m3 = do (do m1;m2);m3
fmap f xs = do x ← xs; return (f x)

For example, using the second rule above, the example given
earlier can be simplified to just:

do putStr "Hello"
getChar

or, after desugaring: putStr "Hello">>getChar

Exercise: derive the above laws from the usual monad laws.
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The List Monad
The List data type is also a Monad :

instance Monad [ ] where
m >>=k = concat (map k m)
return x = [x ]
fail x = [ ]

For example:

do x ← [1,2,3]
y ← [4,5]
return (x ,y)

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

In other words, monadic binding takes a list of values, applies a
function to each of them, collecting all generated results
together. The return function creates a singleton list.
[1,2,3]>>=(λx → [4,5]>>=(λy → return (x ,y))) is the
expansion of the do sugaring!
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List monad explained

The List monad’s return method simply constructs a singleton
list, i.e. injects a value into the obvious one-element list with
this value.

The idea behind the implementation of >>= for List is to apply
an operation to all elements in the left hand argument (a list).
While doing so we gather all possible values that arises, and in
a sense we generate lists.

I.e. the previous computation (i) applies the right hand
argument to all the elements of the left hand argument (the list),
and (ii) gathers the resulting values together, here via
generation of a singleton lists of pairs.
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List - what it is

The List monad gives us an encapsulation of nondeterministic
computations, i.e. computations that can generate many
different results, rather than one. This means that we can
simulate relations using functions, e.g. a→ [b ] assigns to each
value in the domain a set (list) of values in the codomain.
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List vs. List Comprehension

The following true equation shows the relationship:

do x ← xs
return (f x) = [f x | x ← xs ]
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List - more than a monad

In fact, List has slightly more algebraic structure than what is
provided by the Monad type class. List is also an instance of
the MonadPlus class as follows:

instance MonadPlus [ ] where
mzero = [ ]
mplus m n = m ++n

In this case, >>= distrbiutes through mplus and mzero is a zero
“element”. I.e. the following laws hold:

zero > k = zero
k >>=λa→ zero = zero
(m mplus n)>>=k = (m >>=k) mplus (n >>=k)

This structure will reappear when we consider parser monads
in the next lecture (since these are based on the List monad).
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State Monad: how it arises

Compare

f :: (s,a)→ (s,b)

to

f ′ ::a→ (s→ (s,b))

The second is the curried form of the first, i.e. curry f = f ′. In
fact, we have (s,a)→ (s,b)∼= a→ (s→ (s,b)) using curry and
uncurry .

This is the basic observation that suggests to us how to define
a monad St b = (s→ (s,b)) for some state s in a very natural
way. The bind >>= operation will essentially be composition of f
above.
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State Monad

Suppose we have some given State type. We can then define
this datatype:

data St a = St (State→ (State,a))

I.e. given a previous state, we transform this state into a new
state plus some additional output a. We can view the state
monad as hiding an extra argument and extra result of type
State during composition.
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State Monads
We instantiate Monad and provide a binding operation that
allows states to be transformed “behind the scene”:

instance Monad St where
return x = St (λs→ (s,x))
(St m0)>>= f = St (λs0→

let (s1,a1) = m0 s0
(St m1) = f a1
(s2,a2) = m1 s1

in (s2,a2)

return returns the parameter paired with the same state.
The operator m >>= f is a computation which runs m0 on
the initial state s0 producing a result a1 and a new state s1,
then f ::a→ St a is applied to to the result a1, giving a state
transformer which is finally applied to s1 producing the
tuple (s2,a2).
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State Monads

This would be quite useless unless we had a way to actually
read and write to the state. The simplest possible state change
is perhaps:

tick ::St ()
tick = St (λx → ((),x +1))

In Haskell there are lot of things available for state monads ...

class Monad m⇒MonadState s m where
get ::m s
put ::s→m ()
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Polymorphic State Monad

The state monad can be made polymorphic by abstracting from
the fixed state State that we previously used:

data St s a = St (s→ (s,a))
instance Monad St where -- same definition as before!

return x = St (λs→ (s,x))
(St m0)>>= f = St (λs0→

let (s1,a1) = m0 s0
(St m1) = f a1
(s2,a2) = m1 s1

in (s2,a2)

Note the partial application of the type constructor St in the
instance declaration. This works because St has kind
?→ ?→ ?, so St s has kind ?→ ? ...
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IO
Suppose we have these operations that implement an
association list:

lookup ::a→ [(a,b)]→Maybe b
update ::a→ b→ [(a,b)]→ [(a,b)]
exists ::a [(a,b)]→ Bool

A file system is just an association list mapping file names
(strings) to file contents (strings):

type State = [(String,String)]

Then an extremely simplified IO monad is:

data IO a = IO (State→ (State,a))

whose instance in Monad is exactly as on the preceding slide,
replacing St with IO.
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IO

All that remains is defining the domain-specific operations,
such as:

readFile ::String→ IO (Maybe String)
readFile s = IO (λ fs→ (fs, lookup s fs))

writeFile ::String→ String→ IO ()
writeFile s c = IO (λ fs→ (update s c fs,()))

fileExists ::String→ IO Bool
fileExists s = IO (λ fs→ (fs,exists s fs))

Variations include generating an error when readFile fails
instead of using the Maybe type, etc.
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A Monadic Evaluator

We can write a new evaluator which uses monads as a
structuring principle. All that is needed, is to change the type of
eval so that m is an instace of Monad .

eval ::Monad m⇒ Term→m Int
eval (Con x) = return x
eval (Div t u) = do x ← eval t

y ← eval u
return (x div y)

Next, we have to make a few local changes for each extension
of the evaluator that we have in mind, for example to handle
raised exceptions. We do not have the rewrite the entire
evaluator for each such change.
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A Monadic Evaluator

do x ← eval t
y ← eval u
return (x div y)

is translated into the following

eval t >>=λx → eval u >>=λy → eval u >>= return (x div y)

Since lambda abstractions binds has lower precedence than
application, this is the same thing as the following after brackets
have been inserted:

eval t >>=(λx → ((eval u)>>=(λy → ((eval u)>>= return (x div y)))))

Note also that the type of eval provides some information. The
result is m Int , which says that eval performs a computation
that yields an integer as a result.
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A Monadic Evaluator: Exceptions

For example, assuming the monad m is provided with an extra
function raise ::String→ Exc a, the following local change is all
we need:

if b ≡ 0
then raise "divide by zero"
else return (x div y)

In summary we have:

eval (Con t u) =
do {x ← eval t ;y ← eval u;

if b ≡ 0
then raise "zero divisor"
else return (x div y)}
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Evaluating with State

Indeed we can now pass a state around during evaluation,
while also update (read and write) the state as we go. We settle
for tick :

evalSt ::Term→ St Int
evalSt (Con x) = return x
evalSt (Div t u) = do x ← evalSt u

y ← evalSt t
tick
return (x div y)

You can think about how to e.g. perform an efficient operation
on a tree datatype by threading a state through the
computation, e.g. counting the number of visited nodes.
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Summary
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Summary
We have seen two prominent techniques for structuring purely
functional programs:

Decompose programs based the values that they
consume/produce, using fold functions, such as foldr and
unfoldr for lists and foldBtree for trees, or other similar
structured recursion combinators suitable for the problem
at hand, ideally with good algebraic properties.
Structure a program after the effects they have on their
environment, i.e. use monads to build functional programs.

In the next lecture we apply monads:
Parsing text using recursive descent. Monads gives an
algebra of parsers.
Writing interpreters of languages using monads. This
allows languages to “grow”...
Composing effects, interpreters etc using so-called monad
transformers.

Good luck with this weeks homework!
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