
Advanced Functional 
Programming, 1DL450

2012
Lecture 2, 2012-11-01

Cons T Åhs

måndag 05 november 2012



Higher order functions

‣ Syntax for anonymous functions is rather verbose

‣ Anonymous functions can have several clauses and use pattern matching

‣ A variable can be bound to a function

‣ Apply the function by using the variable instead of a function name

‣ Erlang got this right!

‣ What is the value of hof()?

hof() ->
  F = fun(X) -> X * X + 1 end,
  L = lists:map(F, [1, 2, 3],

  G = fun([])    -> nil;
         ([_|_]) -> cons
      end,

  Y = G(L),
  Y == nil.

måndag 05 november 2012



Scoping revisited
‣ The scope of a variable binding is the rest of the function clause

‣ An expression can only access variables bound before the expression

‣ It is not possible to write a local recursive function in the “ordinary” way

no(N) ->
  G = fun(0) -> 1;
         (N) -> N*G(N-1)
      end,

  G(N).

‣ It is possible to write a “local recursive” function using higher order functions

‣ Observe that G inside is “just” a function variable so it has to be passed to the 
function

‣ This is a good exercise!

‣ Write factorial in this way.

måndag 05 november 2012



Higher order functions

‣ A function can be returned

‣ Notation for passing a named function as an argument

‣ Describe the functions inclist/1, whatlist/1 and what/2

make_adder(N) ->
fun(X) -> X + N end.

inclist(L) ->
lists:map(make_adder(3), L).

whatlist(L) ->
  lists:map(fun make_adder/1, L).

what(L, V) ->
lists:map(fun(F) -> F(V) end, L).

måndag 05 november 2012



Higher order functions

‣ Making curried functions suitable for partial application is possible, but quickly 
becomes a bit difficult to read.

‣ This is much easier in languages designed for this from the start.

cumbersome(M) ->
MakeAdder = fun(N) ->

fun(X) -> X + N end
end,

(MakeAdder(3))(M).

måndag 05 november 2012



Digression on closures

‣ We have the cool feature of being able to return a closure, i.e., a function and 
the environment it was defined in.

‣ What does make_what/1 do?

‣ Returns a function of no (?) argument.

‣ It delays a computation!

‣ The body is evaluated only when we apply the result (of make_what/1) to ().

‣ We can thus save and represent a computation and do it later.

make_adder(N) ->
fun(X) -> X + N end.

make_what(M) ->
fun() -> fibonacci(M) end.

do_it(D) ->
D().

måndag 05 november 2012



Variables can hold anything
-module(sequences).
-export([plus/2, minus/2]).

plus(X, Y) -> X ++ Y.
minus(X, Y) -> X -- Y.

-module(numbers).
-export([plus/2, minus/2]).

plus(X, Y) -> X + Y.
minus(X, Y) -> X - Y.

-module(eval).
-export([eval/4]).

eval(M, F, A1, A2) ->
    M:F(A1, A2).

10> eval:eval(sequences, plus, [1,2,3], [a,b,c]).
[1,2,3,a,b,c]
11> eval:eval(numbers, plus, 4, 7).
11
12> 

måndag 05 november 2012



Variables can hold anything
‣ A variable can be bound to

‣ ordinary values and functions (no surprise)

‣ function names

‣ modules

‣ This means you can send a whole module M as an argument to another function 
and the receiving function then calls known functions in M.

‣ Is this useful?

‣ Yes!

‣ It also means that given a module you can vary the actual function that is called 
by passing the name in a variable.

‣ Is this useful?

‣ Possibly.

‣ Both variations lead to the possibility to map, e.g., user input directly to Erlang 
modules and functions at runtime.

‣ Great way to make a really insecure system!

måndag 05 november 2012



Variables can hold anything
‣ We had two modules which exported the same function names and arities

‣ They thus have the same interface!

‣ This concept exists in Erlang, but has the name behaviour

‣ It can be used in the same way as in, e.g., Java by providing several different 
implementations of the same (abstract) interface

‣ A very commonly used behaviour is the gen_server (for generic server)

‣ You provide the details and a generic server takes care of the generic parts.

måndag 05 november 2012



BIFs (Built In Functions)
‣ BIFs exist to provide functionality that can’t be done in pure Erlang

‣ interface with the real world for things like date, time and low level file 
system access

‣ conversion between primitive types such as

‣ atom_to_list (convert an atom to a “string”)

‣ list_to_atom (convert a “string” to a (new) atom)

‣ etc

‣ There might also be BIFs for functions that can be implemented in Erlang, but a 
BIF will do it faster.

‣ Read documentation!

måndag 05 november 2012



Standard Libraries
‣ Erlang comes with a large set of standard libraries, e.g,

‣ list function

‣ dictionaries of varying representation

‣ ets, dets - term storage, either in memory or on disk

‣ mnesia - database built on top of dets

‣ etc

‣ Read the documentation

måndag 05 november 2012



List comprehensions
‣ Erlang has the standard higher order list functions such map, filter and foldl/r

‣ Erlang also has list comprehension for concise construction of lists

‣ Very similar to describing sets

‣ Examples

foo(L) ->
  Squares = [X*X || X <-L],
  Squares = lists:map(fun(X) -> X*X end, L),

  Appls = [{X, f(X)} || X <- L, X > 2],
  Appls = lists:map(fun(X) -> {X, f(X)} end,
                    lists:filter(fun(X) -> X > 2 end, L)),
  Appls = lists:foldr(fun(X, S) ->
                        case X > 2 of
                          true  -> [{X, f(X)} | S];
                          false -> S
                        end
                      end,
                      [], L),
  {Squares, Appls}.

måndag 05 november 2012



List comprehensions
‣ The left hand is an expression for constructing an element (evaluated

‣ The right hand side consists of

‣ generators (Var <- Expression)

‣ conditions or filters (a boolean expression on a Var)

‣ There can be several generators and conditions

map(F, L) -> [F(X) || X <- L].

filter(P, L) -> [X || X <- L, P(X)].

combine(L) -> [{X, Y} || X <- L, Y <- L, X=/=Y].

måndag 05 november 2012



List comprehension
‣ Generate all permutations of a list

‣ The result of one generator can be used in another

‣ Very compact, but it takes some time to understand

‣ Exercise: write the same function without comprehension

perms([]) -> [[]];
perms(L)  ->
  [[X|T] || X <- L, T <- perms(L -- [X])].

måndag 05 november 2012



Concurrent Programming
‣ Process model used in Erlang

‣ No shared memory between processes

‣ Problems when you have a shared and mutable state - Erlang has neither

‣ A process that dies does not corrupt the state of another process

‣ Communication by message passing; messages are copied (even within the 
same VM)

‣ Fast and easy process creation

‣ Initial size of a process is 3-400 bytes

‣ Easy distribution among

‣ cores (within same VM)

‣ VMs (on same hardware node)

‣ hardware nodes

‣ Communication is identical regardless of where the other process lives

‣ Processes are identified by PIDs (process identifiers)

måndag 05 november 2012



What about state?
‣ Real world computations need state

‣ State is encoded in a process that reacts to messages

‣ init state

‣ wait for message

‣ compute new state and “loop”

‣ start the server and send messages to it

start() -> server(init_state()).

server(State) ->
  server(process_message(get_msg(), State)).

måndag 05 november 2012



Managing Processes
‣ Three basic primitives are used to handle processes

‣ Create process - returns pid (process id)

‣ Send a message - returns Msg

‣ Receive a message from the message queue (the process will wait if there is no 
message) - returns value of chosen expression

spawn(Function) or spawn(M, F, Args)

Pid ! Msg

receive
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...

end

måndag 05 november 2012



Selective receive
‣ Note that a receive will wait until it finds a message matching the pattern

‣ Messages might not be processed in the order they come

‣ This can be expensive since the message queue has to be searched

receive
foo -> f(..)

end,
receive
  bar -> g(..)
end

måndag 05 november 2012



Example
start() -> server(0).

server(Count) ->
  NewCount = receive
               {report, Pid} -> 
                 Pid ! Count,
                 Count;
               _Msg -> Count + 1
        end,
  server(NewCount).

32> P = spawn(fun simple:start/0).
<0.110.0>
33> P!foo.
foo
34> P!foo.
foo
35> P!foo.
foo
36> P!{report, self()}.
{report,<0.88.0>}
37> receive M -> M end.
3

måndag 05 november 2012



Distribution made easy
‣ Distribute work load among a number of workers

‣ Input

‣ the work to be done, a queue of tasks

‣ the workers that performs the work (pids)

‣ What is specific for each problem?

‣ How to get a chunk of work from the queue

‣ How to combine results from a single worker with the result from the others

måndag 05 november 2012



Distribution made easy
‣ We’re done when the queue is empty and we have no active workers.

‣ We wait for a worker to return a result when the queue is empty or we have no 
passive workers

‣ We activate a worker when the queue is non empty and we have passive workers.

‣ Initial state is a queue of work, no active workers and a collection of passive 
workers.

måndag 05 november 2012



process_work([], [], _, State) -> State;
process_work(Work, Active, Passive, State)
  when Work =:= []; Passive =:= [] ->
  receive {Worker, M} ->
      process_work(Work, lists:delete(Worker, Active),
                   [Worker | Passive], add_result(State, M))
  end;
process_work(Work, Active, [Worker | Passive], State) ->
  {Chunk, Rest} = get_chunk(State, Work),
  Worker ! {self(), Chunk},
  process_work(Rest, [Worker | Active], Passive, State).

Distribution made easy
sequential(L) -> lists:filter(fun is_prime/1, L).

worker() ->
  receive {Pid, Work} ->
      Pid ! {self(), sequential(Work)},
      worker()
  end.

måndag 05 november 2012



Simple Message Passing
‣ Note that you have to set up the actual protocol yourself

‣ If you want a reply, a sent message should include a return address

‣ This goes for the reply as well - the original sender might want to know who sent 
the reply

‣ This might also apply to request identifiers so a more general request would 
contain both a return address and an identifier

måndag 05 november 2012



More on process handling
‣ Linking processes for error handling and supervision

‣ Timeouts

måndag 05 november 2012


