
Advanced Functional
Programming, 1DL450

Lecture 6, 2012-11-16
Cons T Åhs

lördag 17 november 2012

Caching revisited
‣ In Erlang we wrote a cache using the state of a process.

‣ Another obvious way of writing a cache is to store the cache/state in a variable
that survives between function calls

‣ We want a general solution that can be used for any function

‣ The state should not be shared between different cached functions

‣ Define a macro DEFCACHEFUN that can be used instead of DEFUN

‣ LET can be used surrounding a DEFUN

‣ A permanent context is created that is accessible in the DEFUN

(let ((outer nil))
 (defun foo (x y z)
 ... outer ..
 (setf (.. outer) ..)))

lördag 17 november 2012

Caching revisited

‣ Extensive use of GENSYM to safe guard free names in body

‣ Note use of DESTRUCTURING-BIND; allows complex argument lists (with
&KEY, &REST etc)

‣ We are still defining the same function name, so recursive calls will call the
cached function and benefit as well

(defmacro defcachefun (name args &rest body)
 (let ((cache (gensym))
 (value (gensym))
 (exists (gensym))
 (actualargs (gensym)))
 `(let ((,cache (make-hash-table :test #'equal)))
 (defun ,name (&rest ,actualargs)
 (multiple-value-bind (,value ,exists)
 (gethash ,actualargs ,cache)
 (if ,exists
 ,value
 (destructuring-bind ,args ,actualargs
 (setf (gethash ,actualargs ,cache)
 (progn ,@body)))))))))

lördag 17 november 2012

Caching revisited

‣ Why is it beneficial to order the recursive calls as above?

‣ Fast computation of large fibonacci numbers

‣ trade speed for space

(defcachefun fib (n)
 (cond ((= n 0) 0)
 ((= n 1) 1)
 (t (+ (fib (- n 2)) (fib (- n 1))))))

;; expands to

(LET ((#2=#:G311274 (MAKE-HASH-TABLE :TEST #'EQUAL)))
 (DEFUN FIB (&REST #1=#:G311277)
 (MULTIPLE-VALUE-BIND (#4=#:G311275 #3=#:G311276)
 (GETHASH #1# #2#)
 (IF #3#
 #4#
 (DESTRUCTURING-BIND (N) #1#
 (SETF (GETHASH #1# #2#)
 (PROGN (COND ((= N 0) 0) ((= N 1) 1)
 (T (+ (FIB (- N 2)) (FIB (- N 1))))))))))))

lördag 17 november 2012

Performance
‣ Is Lisp slow?

‣ Interpreted programs are generally slower than compiled

‣ Modern implementations of Lisp (from the 70s and onward) include a
compiler to native code.

‣ In a mid 70s comparison of Lisp and Fortran for a purely numerical
problem, Lisp won. Why?

‣ More recent comparisons between Lisp and other languages exist

‣ Paul Graham says:

‣ Lisp is two languages: a language for writing fast programs and a language for
writing programs fast.

‣ A language for writing programs fast is easy to construct

‣ high level and rich with features (symbolic, math based, no typing etc)

‣ you are more productive in a high level language

‣ making the program fast requires a good compiler, but does the language
have to be low(er) level?

lördag 17 november 2012

Performance
‣ Common Lisp is dynamically typed, meaning that type checks are performed at

runtime.

‣ For compiling it is possible to add declarations and hints to the compiler.

‣ The declarations are standardised, but exactly how much the compiler uses them
is up to the implementation. Some examples

‣ OPTIMIZE - hint to compiler what to optimise on

‣ COMPILATION-SPEED

‣ DEBUG - ease of debugging

‣ SPEED - speed of object code

‣ SAFTEY - run time error checking

‣ SPACE - both code size and run time space

‣ TYPE - specify type of variable

‣ FTYPE - specify type of function

‣ INLINE - hint to compiler that a function can/should be inlined

‣ SPECIAL - declare name to be dynamically scoped

lördag 17 november 2012

Performance
‣ Declarations can be placed either locally (inside functions) or globally

‣ locally use DECLARE

‣ globally use DECLAIM or PROCLAIM (equivalent)

‣ Different declarations can affect run time properties such as what happens when
you feed a function arguments of the wrong type

‣ the code will assume the declaration correct and generate code for that

‣ with incorrect declarations or or incorrect types at call time, the code can fail
in new ways

lördag 17 november 2012

Performance
‣ Code to create a two dimensional array of numbers and then sum all the

numbers

(defun create-array-0 ()
 (make-array '(1000 1000) :initial-element 1))

(defun sum-array-0 (array)
 (let ((sum 0))
 (dotimes (i 1000)
 (dotimes (j 1000)
 (incf sum (aref array i j))))
 sum))

lördag 17 november 2012

‣ Same code, but decorated with declarations of types and optimisation

(defun create-array-1 ()
 (make-array '(1000 1000)
 :initial-element 1
 :element-type 'fixnum))

(defun sum-array-1 (array)
 (declare (optimize (speed 3)
 (space 0)
 (safety 0)))
 (declare (type (simple-array fixnum (1000 1000)) array))
 (let ((sum 0))
 (declare (type fixnum sum))
 (dotimes (i 1000)
 (declare (type fixnum i))
 (dotimes (j 1000)
 (declare (type fixnum j))
 (incf sum (aref array i j))))
 sum))

Performance

lördag 17 november 2012

Performance

‣ Compare the speed using (TIME expression)

‣ Almost 7 times faster, 1/8 memory allocation and no page faults

‣ Try (DISASSEMBLE function)

CL-USER 510 > (compare-sum-array 1000)
Timing the evaluation of (DOTIMES (I N) (SUM-ARRAY-0 ARR-0))

User time = 20.253
System time = 0.114
Elapsed time = 20.048
Allocation = 399288 bytes
57 Page faults
Timing the evaluation of (DOTIMES (I N) (SUM-ARRAY-1 ARR-1))

User time = 2.984
System time = 0.018
Elapsed time = 2.947
Allocation = 48944 bytes
0 Page faults
NIL

lördag 17 november 2012

‣ One small change can hurt performance a lot

(defun sum-array-2 (array)
 (declare (optimize (speed 3)
 (space 0)
 (safety 0)))
 (declare (type (simple-array fixnum (1000 1000)) array))
 (let ((sum 0))
 (declare (type fixnum sum))
 (dotimes (i 1000)
 (declare (type fixnum i))
 (dotimes (j 1000)
 (declare (type fixnum j))
 (incf sum (aref array j i))))
 sum))

Performance

change memory
access pattern

lördag 17 november 2012

Performance

‣ Now more than 3 times slower

‣ Memory access patterns matter

‣ Gives an indication of the quality of the compiler as well

Timing the evaluation of (DOTIMES (I N) (SUM-ARRAY-1 ARR-1))

User time = 2.964
System time = 0.021
Elapsed time = 2.935
Allocation = 39236 bytes
0 Page faults
Timing the evaluation of (DOTIMES (I N) (SUM-ARRAY-2 ARR-1))

User time = 9.221
System time = 0.056
Elapsed time = 9.207
Allocation = 111840 bytes
0 Page faults

lördag 17 november 2012

CLOS

‣ There is more than one way to construct an object oriented programming
language

‣ Java/C++ and more..

‣ define classes with instance variables

‣ define methods on those classes; methods are connected to a specific
class

‣ CLOS - Common Lisp Object System

‣ define classes with instance variables (called slots)

‣ define methods not connected to a specific class

Alan Kay, inventor of Smalltalk:

"I invented the term object oriented, and I can tell you that C++ wasn't what I had in mind."

lördag 17 november 2012

CLOS
‣ DEFCLASS is used to define a class

‣ simplest form gives a name, inheritance and description of slots

‣ allows multiple inheritance (order important)

;; Geometric shapes
(defclass shape () ())

;; Things with colour
(defclass coloured ()
 ((colour :accessor colour :initarg :colour)))

(defclass circle (shape)
 ((radius)
 (center)))

(defclass rectangle (shape)
 ((topleft)
 (width)
 (height)))

(defclass coloured-circle (coloured circle) ())

(defclass colour-rectangle (coloured rectangle) ())
lördag 17 november 2012

CLOS
‣ We can also imagine having different canvases, with different properties for

drawing on them

;; Things to draw on - general canvas
(defclass canvas () ())

;; Special canvas with vector graphics
(defclass vector-canvas (canvas) ())

lördag 17 november 2012

CLOS
‣ Instead of tying methods to a class, CLOS introduces the concept of generic

functions

‣ DEFGENERIC introduces the generic version of the function

‣ similar to an ordinary function, but the definition is spread over several methods
which contain specialisations on the arguments

(defgeneric inside (point object)
 (:documentation "returns true if point is inside object"))

(defgeneric intersects (object1 object2)
 (:documentation "Return true if the objects intersect"))

(defgeneric draw (object canvas)
 (:documentation "Draw OBJECT on CANVAS"))

lördag 17 november 2012

CLOS
‣ DEFMETHOD introduces actual implementations depending on the arguments

‣ note that specialisation can be done on all arguments

‣ we also get rid of the problem of determining which class should know about
another

(defmethod inside (point (object circle))
 ;; code for determining if point is in circle
)

(defmethod inside (point (object rectangle))
 ;; code for determining if point is in rectangle
)

(defmethod intersects ((object1 circle) (object2 circle))
 ...)

(defmethod intersects ((object1 circle) (object2 rectangle))
 ...)

lördag 17 november 2012

CLOS
‣ Methods are ordered according to how specialised they are, so if several methods

are applicable, the most specialised is call

‣ CALL-NEXT-METHOD is used, if needed, to call the next (more general or less
specialised) method

‣ DRAW is specialised on two arguments

(defmethod draw ((object shape) (output canvas))
 (format t "draw object ~w on canvas ~w~%" object output))

(defmethod draw ((object circle) (output canvas))
 (format t "draw circle on canvas~%")
 (call-next-method))

(defmethod draw ((object circle) (output vector-canvas))
 (format t "draw circle on vector-canvas~%")
 (call-next-method))

(defmethod draw ((object coloured) (output canvas))
 (format t "draw with colour: ~s~%" (colour object))
 (call-next-method))

lördag 17 november 2012

CLOS

‣ Create some instance of our classes

‣ Note use of keyword argument to for colour - specified in class definition

‣ more cumbersome without

(setf *circle* (make-instance 'circle))
(setf *canvas* (make-instance 'canvas))
(setf *vector-canvas* (make-instance 'vector-canvas))
(setf *coloured-circle* (make-instance 'coulored-circle
 :colour "red"))

lördag 17 november 2012

CLOS
CL-USER 560 > (draw *circle* *canvas*)
draw circle on canvas
draw object #<CIRCLE 41009CBB> on canvas #<CANVAS 20094A3F>
NIL

CL-USER 567 > (draw *circle* *vector-canvas*)
draw circle on vector-canvas
draw circle on canvas
draw object #<CIRCLE 20098D5F> on canvas #<VECTOR-CANVAS 200F395B>
NIL

CL-USER 568 > (draw *coloured-circle* *canvas*)
draw with colour: "red"
draw circle on canvas
draw object #<COULORED-CIRCLE 201036B3> on canvas #<CANVAS 20094A3F>
NIL

CL-USER 569 > (draw *coloured-circle* *vector-canvas*)
draw with colour: "red"
draw circle on vector-canvas
draw circle on canvas
draw object #<COULORED-CIRCLE 201036B3> on canvas #<VECTOR-CANVAS
200F395B>
NIL

lördag 17 november 2012

CLOS
‣ Methods can also be qualified with :BEFORE, :AFTER, :AROUND to create

different kinds of wrappers

‣ A set of DEFGENERICs can be considered as an interface.

‣ implement methods for your specific classes to make them useable in a
general setting

‣ CLOS is not simple

‣ multiple inheritance

‣ generic functions

‣ method chaining

‣ CLOS is powerful

‣ multiple inheritance

‣ generic functions

‣ method chaining

lördag 17 november 2012

Summary, Common Lisp
‣ Main features:

‣ program data equivalence

‣ macros

‣ Large language with small core

‣ Easy to extend the language within the language itself

‣ DSLs are easy

‣ Programs can focus on the problem domain

‣ Suitable for quick development, but also for high performance

‣ adding declarations about actual types can help a lot

‣ CLOS

‣ another take on object oriented programming

‣ multiple inheritance

‣ generic functions vs message passing (methods bound to classes)

lördag 17 november 2012

