
Advanced Functional
Programming, 1DL450

Lecture 8, 2012-11-26
Cons T Åhs

måndag 26 november 2012

Types revisited
‣ Haskell is statically typed

‣ Type information is derived and checked at compile time

‣ Programs have to be type correct at compile time

‣ Better information up front, less checking at run time

‣ Erlang and Lisp are dynamically typed

‣ Type information is checked at run time

‣ Very little is done at compile time, even for obvious type errors

‣ Static or dynamic typing affects programming style very much

‣ static forces discipline by refusing to compile incorrectly typed programs - this
is good

‣ dynamic requires discipline if you do not want to end up with very large
union types - this is bad

‣ “productivity” might be quite different

‣ Why/when should you choose one or the other?

‣ Why do we have both, really?

måndag 26 november 2012

Overloading
‣ For a strictly typed language each function (operator) will have a well defined

type

‣ good for type inference and understanding

‣ impractical for “standard” functions, such as equality

‣ Many languages introduce overloading to make it more practical

‣ drawback is loss of precision during static analysis

‣ auto conversion between types may take behind the scenes

‣ Examples

‣ numbers

‣ Int, Integer, Float

‣ arithmetic

‣ add, subtract, ..

‣ equality

‣ what does it mean for two objects to be equal?

‣ ordering

‣ printing

måndag 26 november 2012

To type or not to type

‣ If we give a type Haskell will use that type and only complain if the definition is
not of the same type

‣ We can ask for the type of an expression using :type (interactively)

‣ Types mismatch and Haskell complains

fac :: Integer -> Integer
fac 0 = 1
fac n = n * fac (n - 1)

*Main> :type fac
fac :: Integer -> Integer

*Main> :type length
length :: [a] -> Int
*Main> fac (length [1,2,3])

<interactive>:281:6:
 Couldn't match expected type `Integer' with actual type `Int'
 In the return type of a call of `length'
 In the first argument of `fac', namely `(length [1, 2, 3])'
 In the expression: fac (length [1, 2, 3])

måndag 26 november 2012

To type or not to type

‣ Not giving a type makes Haskell more happy

‣ The type, however, might be surprising

-- Don’t specify type
fac 0 = 1
fac n = n * fac (n - 1)

*Main> :type fac
fac :: (Eq a, Num a) => a -> a

*Main> fac (length [1,2,3])
6

Ok!

What’s this?

‣ Enter type classes

måndag 26 november 2012

Type Classes
‣ Type classes can be seen as similar to interfaces in Java

‣ declare name, type dependence and functions to be implemented

‣ other types can then be made to be instances of the type class

‣ types are now conditionalised on belonging to type classes

-- Don’t specify type
fac 0 = 1
fac n = n * fac (n - 1)

*Main> :type (-)
(-) :: Num a => a -> a -> a

*Main> :type fac
fac :: (Eq a , Num a) => a -> a

equality
defined for a a is a number conditional/implication

Note: this version of fac
allows floats, which is
questionable..

måndag 26 november 2012

Type Class Eq
‣ Determining equality means defining when two instances are equal

‣ Equality, i.e., being an instance of Eq, can be defined automatically if want it.

‣ You will then get the simplest possible equality, i.e., isomorphic structures
and members.

data Set a = EmptySet | SetAdd a (Set a) | Union (Set a) (Set a)

*Main> EmptySet == EmptySet

<interactive>:332:10:
 No instance for (Eq (Set a0))
 arising from a use of `=='
 Possible fix: add an instance declaration for (Eq (Set a0))
 In the expression: EmptySet == EmptySet
 In an equation for `it': it = EmptySet == EmptySet

data Set a = EmptySet | SetAdd a (Set a) | Union (Set a) (Set a)
 deriving Eq

*Main> EmptySet == EmptySet
True

måndag 26 november 2012

Type Class Eq
‣ Determining equality means defining when two instances are equal

‣ define equality for the type

‣ make it be part of type class Eq by extending/overloading == to handle the
new type

‣ Read as “..if a is an equality type then two sets of type a are equal when..”

‣ Reading an recursive instance of Eq is a good exercise in operator
precedence..

data Set a = EmptySet | SetAdd a (Set a) | Union (Set a) (Set a)

instance Eq a => Eq (Set a) where
 EmptySet == EmptySet = True
 (SetAdd x EmptySet) == (SetAdd y EmptySet) = x ==y
 (SetAdd x EmptySet) == (Union (SetAdd y EmptySet) EmptySet)
 = x == y
-- more clauses needed..

måndag 26 november 2012

Defining Type Classes

‣ Type class contains one required function

‣ Define instances

‣ Instances can be recursive

class Complexity a where
 complexity :: a -> Integer

instance Complexity Integer where
 complexity x = x

instance Complexity Int where
 complexity x = toInteger x

instance Complexity a => Complexity [a] where
 complexity l = (toInteger (length l))
 + (foldl (\w e -> complexity e + w) 0 l)

måndag 26 november 2012

Predefined Type Classes
‣ Eq - equality

‣ Show - printing instances

‣ solves problem of printing value of computation

‣ Read - reading instances

‣ Enum - enumerate (only possible for certain types)

‣ Ord - extension of Eq for total ordering

‣ .. and some more ..

‣ Together they define a type class hierarchy

måndag 26 november 2012

Type class hierarchy

måndag 26 november 2012

Automagic Deriving
data Day = Monday | Tuesday | Wednesday | Thursday | Friday
 | Saturday | Sunday
 deriving (Eq, Enum, Show, Read, Ord, Bounded)

nextday :: Day -> Day
nextday day = toEnum (fromEnum day + 1)

weekday day = elem day [Monday .. Friday]

*Main> Monday < Wednesday
True
*Main> (toEnum 2) :: Day
Wednesday
*Main> nextday Tuesday
Wednesday
*Main> nextday Friday == Sunday
False
*Main> (read "Saturday") :: Day
Saturday
*Main> nextday (read "Saturday") :: Day
Sunday
*Main> minBound :: Day
Monday

måndag 26 november 2012

Extending Show
data Sexpr a = Leaf a | Cons (Sexpr a) (Sexpr a)

showSexpr :: (Show a) => Sexpr a -> String
showSexpr (Leaf x) = show x
showSexpr (Cons car cdr) =
 "(" ++ showSexpr car ++ " . " ++ showSexpr cdr ++ ")"

instance Show a => Show (Sexpr a) where
 show s = showSexpr s

*Main> (Cons (Cons (Leaf 3)(Leaf 2)) (Leaf 4))
((3 . 2) . 4)

‣ Extending Read allows you to define you input syntax as well

måndag 26 november 2012

The Show Class

type ShowS = String -> String

class Show a where
 showsPrec :: Int -> a -> ShowS
 show :: a -> String
 showList :: [a] -> ShowS

 showsPrec _ x s = show x ++ s
 show x = showsPrec 0 x ""
 -- ... default decl for showList given in Prelude

‣ showsPrec is for converting to strings using precedence

‣ ShowS is used to produce accumulating implementations of show, making it more
efficicient

måndag 26 november 2012

Revisiting show for Sexprs
data Sexpr a = Leaf a | Cons (Sexpr a) (Sexpr a)

showsSexpr :: (Show a) => Sexpr a -> ShowS
showsSexpr (Leaf x) = shows x
showsSexpr (Cons car cdr) =
 ('(':) . showsSexpr car . (" . "++) . showsSexpr cdr . (')':)

instance Show a => Show (Sexpr a) where
 show s = showsSexpr s ""

*Main> (Cons (Cons (Leaf 3)(Leaf 2)) (Leaf 4))
((3 . 2) . 4)

‣ Return a function with an accumulator instead

‣ Linear complexity instead of quadratic

‣ Note compact representation with use of function composition

måndag 26 november 2012

Class Enum

class Enum a where
 succ, pred :: a -> a
 toEnum :: Int -> a
 fromEnum :: a -> Int
 enumFrom :: a -> [a] -- [n..]
 enumFromThen :: a -> a -> [a] -- [n,n'..]
 enumFromTo :: a -> a -> [a] -- [n..m]
 enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]

‣ Introduce convenient functions and notations for enumerations

måndag 26 november 2012

Class Eq

class Eq a where
 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)
 x == y = not (x /= y)

‣ Only one needs to be defined

‣ Standard definitions exist for both exists

‣ One can be defined in terms of the other

måndag 26 november 2012

Ordering
data Ordering = LT | EQ | GT
 deriving (Eq, Ord, Bounded, Enum, Read, Show)

class (Eq a) => Ord a where
 compare :: a -> a -> Ordering
 (<), (<=), (>=), (>) :: a -> a -> Bool
 max, min :: a -> a -> a

 compare x y | x == y = EQ
 | x <= y = LT
 | otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

max x y | x <= y = y
 | otherwise = x
min x y | x <= y = x
 | otherwise = y

måndag 26 november 2012

Class Num
class (Eq a, Show a) => Num a where
 (+), (-), (*) :: a -> a -> a
 negate :: a -> a
 abs, signum :: a -> a
 fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
 toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
 quot, rem, div, mod :: a -> a -> a
 quotRem, divMod :: a -> a -> (a,a)
 toInteger :: a -> Integer

måndag 26 november 2012

Class Num
class (Num a) => Fractional a where
 (/) :: a -> a -> a
 recip :: a -> a
 fromRational :: Rational -> a

class (Fractional a) => Floating a where
 pi :: a
 exp, log, sqrt :: a -> a
 (**), logBase :: a -> a -> a
 sin, cos, tan :: a -> a
 asin, acos, atan :: a -> a
 sinh, cosh, tanh :: a -> a
 asinh, acosh, atanh :: a -> a

måndag 26 november 2012

