
Exam 2012-04-13
Advanced Functional Programming

Uppsala University
Department of information technology

Sven-Olof Nyström

April 4, 2012

Please read the following instructions carefully:

� The exam is five hours.

� This is a closed book exam. No literature or notes are allowed.

� Use a separate sheet for each question, and write your anonymous exam code
(not your name) on each sheet. Leave a margin. Don’t write anything important
in the top-left corner.

� Please write clearly. Keep in mind that if I cannot read an answer, I cannot
give any points for it.

� If something is unclear, try to make reasonable assumptions and write them
down. I will not come in and answer questions, but the invigolators (the persons
responsible for watching you while you write the exam, skrivvakterna) have my
phone number if there is any problem or question.
I’ll be prepared for calls between 9.30 and 10.30, so make sure you have read
the exam by then. (I’ll try to be available for phone calls during the entire
exam period, but it may be harder to reach me at other times.)

� The last pages contain some simple program examples in Erlang, Common Lisp
and Haskell.

Maximum points: 60. Normally, 30 points are required for a 3 (passing) grade, 40
for a 4, and 50 for a 5 (very good) grade.

Read the whole exam before you start. If you get stuck on one question, proceed
to the next—the questions are not necessarily ordered in level of difficulty.

1

1. Walking (10p)
Your task is to simulate a random walk. A process starts at position 0,
receives commands ’left’ or ’right’ and increments or decrements the position
accordingly. If a process reaches position -1 it becomes ’stuck’ and will not
move again.
Examples:

Input: right, right, right

Final position: 3.

Input: right, left

Final position: 0

Input: left, right

Final position: -1

There must also be a way to ask the process for its current position.
As part of this problem you’ll need to define an interface to the process, i.e., a
set of functions that are to be used when one wants to start a process or
communicate with the process.

2. Messenger (10p)
Consider the Erlang program below (some library functions used are
explained after the program).
One node in the network of Erlang nodes runs a server which maintains data
about the logged on users. The server is registered as messenger. Each node
where there is a user logged on runs a client process registered as
mess client.
Among the operations defined are

� logon(Name)
Allows a user to logon and choose a suitable Name. If the Name is
already logged in at another node or if someone else is already logged in
at the same node, login will be rejected with a suitable error message.

� logoff()
Logs off anybody at at node

� message(ToName, Message)
sends Message to ToName. Error messages if the user of this function is
not logged on or if ToName is not logged on at any node.

Questions:

(a) There are two types of processes in this program. Which?
(b) Which messages do the two types of processes accept?

2

(c) Describe the communication that occurs when a client
i. logs on,
ii. sends a message to another client
iii. logs off
(You may assume that the server and the other client are already
spawned and the other client has logged on.)

-module(messenger).
-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).

%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->

server_node.

%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server(User_List) ->

receive
{From, logon, Name} ->

New_User_List = server_logon(From, Name, User_List),
server(New_User_List);

{From, logoff} ->
New_User_List = server_logoff(From, User_List),
server(New_User_List);

{From, message_to, To, Message} ->
server_transfer(From, To, Message, User_List),
io:format("list is now: ~p~n", [User_List]),
server(User_List)

end.

%%% Start the server
start_server() ->

register(messenger,
spawn(messenger, server, [[]])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->

%% check if logged on anywhere else
case lists:keymember(Name, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, %reject logon
User_List;

false ->
From ! {messenger, logged_on},
[{From, Name} | User_List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->

lists:keydelete(From, 1, User_List).

3

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->

%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User_List) of

false ->
From ! {messenger, stop, you_are_not_logged_on};

{value, {From, Name}} ->
server_transfer(From, Name, To, Message, User_List)

end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->

%% Find the receiver and send the message
case lists:keysearch(To, 2, User_List) of

false ->
From ! {messenger, receiver_not_found};

{value, {ToPid, To}} ->
ToPid ! {message_from, Name, Message},
From ! {messenger, sent}

end.

%%% User Commands
logon(Name) ->

case whereis(mess_client) of
undefined ->

register(mess_client,
spawn(messenger, client, [server_node(), Name]));

_ -> already_logged_on
end.

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->
case whereis(mess_client) of % Test if the client is running

undefined ->
not_logged_on;

_ -> mess_client ! {message_to, ToName, Message},
ok

end.

%%% The client process which runs on each server node
client(Server_Node, Name) ->

{messenger, Server_Node} ! {self(), logon, Name},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive

logoff ->
{messenger, Server_Node} ! {self(), logoff},
exit(normal);

{message_to, ToName, Message} ->
{messenger, Server_Node} ! {self(), message_to, ToName, Message},
await_result();

4

{message_from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])

end,
client(Server_Node).

%%% wait for a response from the server
await_result() ->

receive
{messenger, stop, Why} -> % Stop the client

io:format("~p~n", [Why]),
exit(normal);

{messenger, What} -> % Normal response
io:format("~p~n", [What])

end.

Some library functions.

� lists:keysearch(To, 2, User List) looks for a tuple with second
element equal to Name in User List.

� lists:keymember(Name, 2, User List) Returns true if such a tuple
exists, otherwise false.

� lists:keydelete(From, 1, User List) Deletes a tuple in User List if
its first element is equal to From.

3. if-let (10p)
Your task is to implement a macro if-let. An expression

(if-let x e1 e2 e3)

should behave like an ordinary if, i.e., (if e1 e2 e3), but when the
condition e1 does not evaluate to nil, the variable x should be bound to the
value of the condition.
Example: If we assume that the function lookup looks for a key in some table
and returns nil if the key was not found, the following two functions should
behave the same.

(defun foo (key table)
(if-let x (lookup key table)

(list x x)
nil))

(defun foo1 (key table)
(let ((x (lookup key table)))

(if x (list x x)
nil)))

5

4. dolist (10p)
Common Lisp has a simple construct for iterating over a list called dolist.
dolist binds a variable to the elements of a list in order and stops when it
hits the end of the list.
Example:

> (dolist (x ’(a b c)) (print x))
A
B
C
NIL

Dolist always returns nil. Note that the value of x in the above example was
never nil: the NIL below the C was the value that dolist returned, printed by
the read-eval-print loop.
Here is another example of the use of dolist:

[49]> (defun my-reverse (list)
(let ((new-list nil)) ;initially nil, or empty list

(dolist (x list)
(setf new-list (cons x new-list)))

new-list))
MY-REVERSE
[50]> (my-reverse ’(a b c d e f g))
(G F E D C B A)

Your task is to implement dolist as a macro.

5. Random walk, revisited (10p)
Again, your task is to implement a simulation of a random walk. Here, a
function takes an initial position and a list of commands (LEFT, RIGHT) and
produces a list of positions.
As previously. position -1 is “sticky”. Once the process has reached position
-1 it will remain there.
Make sure that you also handle infinite lists of input.
Note that you also need to definie a datatype with the values LEFT and RIGHT.
Example:

*Main> walk 0 [RIGHT, RIGHT]
[0,1,2]
*Main> walk 0 [RIGHT, RIGHT, LEFT]
[0,1,2,1]
*Main> walk 0 [LEFT, LEFT]
[0,-1,-1]
*Main> walk 0 [LEFT, LEFT,RIGHT]
[0,-1,-1,-1]
*Main> walk 0 [RIGHT, LEFT, RIGHT, RIGHT]
[0,1,0,1,2]

6

6. Some functions on infinite lists (10p)
Define the following functions so that they work even for lists that may be
infinite.

(a) A function that takes two sorted lists of integers without duplicates and
computes their union, i.e., the list of integers that occur in either list.

(b) A function that takes two sorted lists of integers without duplicates and
computes their intersection, i.e., the list of integers that occur in both
lists.

(c) A function that takes a sorted list of integers that may contain
duplicates and returns a list with the duplicates removed.

Good Luck!

Sven-Olof

7

% Simple definitions of map, quicksort and factorial, to illustrate
% Erlang’s list syntax, list comprehensions, if-expressions and case
% expressions.

map1(_F, []) ->
[];

map1(F, [X|L]) ->
[F(X) | map1(F, L)].

map2(F, L) ->
[F(X) || X <- L].

quick([]) ->
[];

quick([X|L]) ->
quick([Y || Y <- L, Y<X])

++ [X]
++ quick([Y || Y <- L, X=<Y]).

fac1(X) ->
if

X<1 ->
1;

true ->
X*fac1(X-1)

end.

fac2(X) ->
case X<1 of

true ->
1;

false ->
X*fac2(X-1)

end.

% A simple example with processes
-module(counter).

-export([start/0, loop/1, increment/1, value/1, stop/1]).

start() ->
spawn(counter, loop, [0]).

increment(Counter) ->
Counter ! increment.

value(Counter) ->
Counter ! {self(), value},
receive

{Counter, Value} ->
Value
end.

stop(Counter) ->

8

Counter ! stop.

loop(Val) ->
receive

increment ->
loop(Val+ 1);

{From, value} ->
From ! {self(), Val},
loop(Val);

stop ->
true;

_ ->
loop(Val)
end.

;; Factorial written in a rather clumsy imperative style.

(defun fac1 (n)
(let ((p 1))

(block my-loop
(loop

(when (= n 0)
(return-from my-loop p))

(setf p (* p n))
(setf n (- n 1))))))

;; A slightly less clumsy imperative factorial. (dotimes (i n) ...)
;; iterates over the values 0 .. n-1.

(defun fac2 (n)
(let ((p 1))

(dotimes (i n)
(setf p (* p (+ i 1))))

p))

;; Append two lists

(defun appendx (x y)
(cond

((null x) y)
(t (cons (car x) (appendx (cdr x) y)))))

;; Efficient list reversal using a help function.

(defun myrev (l)
(labels

((rev-help (l acc)
(cond

((null l) acc)
(t (rev-help (cdr l) (cons (car l) acc))))))

(rev-help l nil)))

;; A simple macro.

9

(defmacro my-if (condition then else)
‘(cond (,condition ,then)

(t ,else)))

fak :: Integer -> Integer
fak 0 = 1
fak n = n * fak (n-1)

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort [y | y <- xs, y<x]

++ [x]
++ quicksort [y | y <- xs, y>=x]

zip :: [a] -> [b] -> [(a,b)]
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip xs ys = []

fib :: [Integer]
fib = 1 : 1 : [a+b | (a,b) <- zip fib (tail fib)]

class Weight a where
weight :: a -> Integer

instance Weight Integer where
weight x = x

instance Weight Int where
weight x = toInteger(x)

instance Weight [a] where
weight l = toInteger(length l)

10

