### Lecture 6 Object representation and description

**Robin Strand** 

GW 11.1-11.4 Suggested problems: 11.19,11.25



### Image analysis fundamental steps



#### Farmed vs wild salmon



#### Distinguishing between salmon and sea trout



#### **Representation and description**



#### **Representation and description**

Commonly after segmentation one needs to **represent** objects in order to **describe** them

- External (boundary):
  - Representation: Polygon of the boundary
  - Description: The circumference
- Internal (regional)
  - Representation: Pixels inside the object
  - Description: The average color

### **Representations and descriptors**

- The Representation of the Object
  - An encoding of the object
  - Truthful but possibly approximate
- A Descriptor of the Object:
  - Only an aspect of the object
  - Suitable for classification
  - Consider invariance to e.g. noise, translation,

### **Shape Representation**

- Sometimes necessary/desirable to represent an object in a less complicated or more intuitive way
- Simple descriptions like enclosing circle, enclosing rectangle, inscribed circle etc.
- The boundary or boundary segments
- Divide an object into regions or parts
- Represent by "skeleton"

# Scale, rotation and translation

• Often we want descriptors that are invariant of scale, rotation and translation:



 However, not always. In Optical Character Recognition (OCR) rotation and scale is important (e.g. 'P' and 'd')

# Chain code: a contour based shape representation

Chain code – the sequence of steps generated when walking around the boundary of a segmented region Chain code can be defined for 4 and 8 neighbours



# **Chaincode example**

#### 4-connected: 0003030303232 11222232110111



#### 8-connected: 0007776542344542212





# Chain Coding issues/drawbacks

- Code becomes very long and noise sensitive
  - ->Use larger grid spacing, smooth/edit the code
- Scale dependent

->Choose appropriate grid spacing

• Start point determines result

->Treat code as circular (minimum magnitude integer) 754310 -> 075431

Depends on rotation

->Calculate difference code (counterclockwise) 075431 ->



### **Example: editing the chain code**

replace 0710 with 0000





- A digital boundary can be approximated (simplified)
- For closed boundaries:
  - Approximation becomes exact when no. of segments of the polygons is equal to the no. of points in the boundary
- Goal is to capture the essence of the object shape
- Approximation can become a time consuming iterative process

- Minimum Perimeter Polygons (MPPs)
  - Cover the boundary with cells of a chosen size and force a rubber band like structure to fit inside the cells



#### Merging techniques

- 1. Walk around the boundary and fit a least-square-error line to the points until an error threshold is exceeded
- 2. Start a new line, go to 1
- 3. When the start point is reached the intersections of adjacent lines are the vertices of the polygon



#### Splitting techniques

- 1. Start with an initial guess
- 2. Calculate the orthogonal distance from lines to all points
- 3. If maximum distance > threshold, create new vertex there
- 4. Repeat until no points exceed criterion



#### **Boundary representation: signatures**



## Signatures

- A 1D representation of a boundary
- Could be implemented in different ways
  - Distance from centre point to border as a function of angle
  - Angle between the tangent in each point and a reference line (histogram of this is called slope density function)
- Independent of translation, but not rotation & scaling.

->Select unique starting point (e.g. based on major axis)

->Normalize amplitude of signature (divide by variance)

# **Boundary segments**

- When a boundary contains major concavities that carry shape information it can be worthwhile to decompose it into segments
- A good way to achieve this is to calculate the **convex Hull** of the region enclosed by the boundary = minimal enclosing convex region



->Smooth prior to Convex hull calculation->Calculate Convex Hull on polygon approximation

#### **Convex hull, deficiency and concavity tree**

- Convex Hull = minimal enclosing convex region
- Convex region = all points can be connected through a straight line inside the region
- Convex deficiency = Convex hull object



- The number and distribution of convex deficiency regions may also be useful
- => Concavity tree, generate convex hulls and deficiencies recursively to create at concavity tree

Figure 6.30 Concavity tree construction: (a) Convex hull and concave residua, (b) concavity tree.

### Skeletons

"Curve representation" of the object

Should in general be thin, centered, topologically equivalent to original object and reversible

Can be created by thinning =iteratively removing pixels from the border while keeping the overall shape and topology (see book for detailed description) or by medial axis transform (MAT) = all inscribed circles touching two or more points at

the border at the same time

Skeletons are sensitive to small changes in shape

- >smooth first or "prune" skeleton afterwards







### **Skeleton from medial axis**



#### **Skeleton example**



Largest connected component is chosen as object of interest

Skeleton or medial axis representation used for length measurements

#### **Skeleton example: Neurite outgrowth analysis**



# Descriptors

- After representation, the next step is to describe our boundaries and regions so that we later can classify them (next lecture)
- A description is an aspect of the representation
- What descriptor is useful for classification of
  - adults / children
  - pears / bananas / tomatoes



# Simple boundary (segment) descriptors

- Length (perimeter)
- Diameter =  $\max_{i,j} [D(p_i, p_j)]$  = major axis
- Minor axis (perpendicular to major axis)
- Basic rectangle = major × minor
- Eccentricity = major / minor
- Curvature= rate of change of slope



- Represent the boundary as a sequence of coordinates
- Treat each coordinate pair as a complex number

$$s(k) = [x(k), y(k)], k = 0, 1, 2, \dots, K - 1$$
  
 $s(k) = x(k) + iy(k)$ 

 From the DFT of the complex number we get the Fourier descriptors (the complex coefficients, a(u))

$$a(u) = \sum_{k=0}^{K-1} s(k) e^{-j2\pi uk/K}, u = 0, 1, 2, \dots, K-1$$

- The IDFT from these coefficients restores s(k)  $s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u)e^{j2\pi uk/K}, k = 0, 1, 2, \dots, K-1$
- We can create an approximate reconstruction of s(k) if we use only the first P Fourier coefficients

$$\hat{s}(k) = \frac{1}{P} \sum_{u=0}^{I-1} a(u) e^{j2\pi u k/K}, k = 0, 1, 2, \dots, K-1$$

• Boundary reconstruction using 546, 110, 56, 28, 14 and 8 Fourier descriptors out of a possible 1090.



 This boundary consists of 64 point, P is the number of descriptors used in the reconstruction



### Image moments

- A particular weighted average of the image pixels' intensities
- Describe simple properties of a segmented image:
  - area (for binary images)
  - total intensity (for grayscale images)
  - centroid
  - orientation

### Image moments

• Raw moments – for p, q = 0, 1, 2, ... the raw moment  $M_{ij}$  is:

$$M_{ij} = \sum_x \sum_y x^i y^j I(x,y)$$

- Area (or sum of gray intensities) =  $M_{00}$
- Centroid  $\{\bar{x}, \bar{y}\} = \left\{\frac{M_{10}}{M_{00}}, \frac{M_{01}}{M_{00}}\right\}$
- Central moments for p, q = 0, 1, 2, ...:

$$\mu_{pq} = \sum_x \sum_y (x-ar{x})^p (y-ar{y})^q f(x,y)$$

### **Simple Regional Descriptors**

- Area = number of pixels in a region
- Compactness (P2A) = perimeter^2 / 4×π×area
- Circularity ratio =  $4 \times \pi \times area$  / perimeter^2 •

#### **Graylevel measures**

- Mean
- Median
- Max
- Etc.

### **Examples of P2A vs area**



### **Topological descriptors**

- Topology = The study of the properties of a figure that are unaffected by any deformation
- Topological descriptors
  - Number of holes in a region, H
  - Number of connected components, C
  - Euler number, E = C H

#### ABCioåö598



### Texture

- Textures can be very valuable when describing objects
- Example below: Smooth, coarse and regular textures



### Texture

- Statistical texture descriptors:
  - Histogram based
  - Co-occurence based

(Statistical moments, Uniformity, entropy,...)

- Spectral texture descriptor
  - Use fourier transform

# **Histogram based descriptors**

- Properties of the graylevel histogram, of an image or region, used when calculating statistical moments
  - z : discrete random variable representing discrete graylevels in the range [0, L-1]
  - P(z<sub>i</sub>) : normalized histogram component, i.e. the probability of finding a gray value corresponding to the i:th gray level z<sub>i</sub>.

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i), \quad m = \sum_{i=0}^{L-1} z_i p(z_i)$$

2<sup>nd</sup> moment : Variance of z (contrast measure)

3<sup>rd</sup> moment : Skewness

4<sup>th</sup> moment : Relative flatness

# **Histogram based descriptors**

Two **other** common histogram based texture measures:

• Uniformity (maximum for image with just one grayvalue):

$$U = \sum_{i=0}^{L-1} p^2(z_i)$$

Average entropy (measure of variability, 0 for constant images)

$$e = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

# Intensity histogram says nothing about the spatial distribution of the pixel intensities



### **Co-occurrence matrix**

- For an image with N graylevels, and P, a positional operator, generate A, a N × N matrix, where a<sub>i,j</sub> is the number of times a pixel with graylevel value z<sub>i</sub> is in relative position P to graylevel value z<sub>i</sub>
- Divide all elements in A with the sum of all elements in A. This gives a new matrix C where c<sub>i,j</sub> is the probability that a pair of pixels fulfilling P has graylevel values z<sub>i</sub> and z<sub>j</sub> which is called the co-occurrence matrix

### **Building the matrix A**







What will the matrix look like for the striped image if P= one pixel down?



### **Co-occurrence matrix Descriptors**

• Maximum probability (strongest response to P)

 $max_{i,j}(c_{ij})$ 

• Uniformity

$$\sum_{i} \sum_{j} c_{ij}^2$$

• Entropy (randomness)

 $-\sum_{i}\sum_{j}c_{ij}\log_2 c_{ij}$ 

How can rotation robust measures be achieved?

### **Co-occurrence matrix**

• Match image with a co-occurrence matrix!





max prob:0.000060.015000.0680Uniformity:0.000020.012300.00480Entropy:15.756.4313.58

# How to choose / design representations and descriptors:

- Find/create representations/descriptors that are invariant to transformations that are unimportant for your task:
  - e.g. noise, scale, blur, ...
- Find/create representations and descriptors that are relevant for your question
  - height, to classify adults / children
  - color and shape to separate bananas, pears and tomatoes
- Be creative
- Stay as simple as possible