Deep Learning for Image Analysis

Computer Assisted Image Analysis I

Joakim Lindblad joakim@cb.uu.se

Uppsala University

2018-11-29

Outline

Introduction

Linear classifiers and their limits

Neural networks – stacked non-linear classifiers

Deep Convolutional Neural Network

UPPSALA UNIVERSITET

Further reads/links

Introduction

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

- Deep neural networks, the current state-of-the-art in classification.
- Deep learning algorithms are consistently winning the major competitions.
- Can learn hierarchical features from the input, together with the classification.

Object detection

Hui Li, et al., Reading Car License Plates Using Deep Convolutional Neural Networks and LSTMs. Jan 2016

Cell segmentation

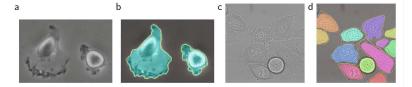
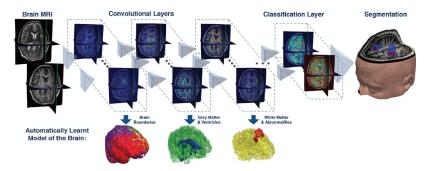


Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the "PhC-U373" data set. (b) Segmentation result (cyan mask) with manual ground truth (yellow border) (c) input image of the "DIC-HeLa" data set. (d) Segmentation result (random colored masks) with manual ground truth (yellow border).

Olaf Ronneberger, et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015

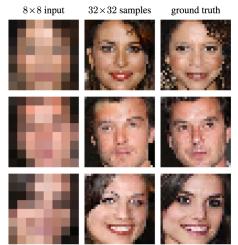
Medical image segmentation



Konstantinos Kamnitsas et al., Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. February 2017

-CELEGILE/

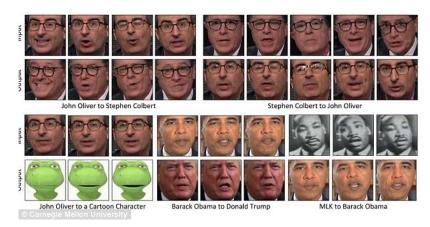
Super resolution



Ryan Dahl, et al, Pixel Recursive Super Resolution, February

Joakim Lindblad joakim@cb.uu.se

Face transfer/lip-syncing



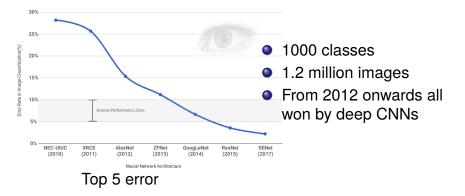
A. Bansal, S. Ma, D. Ramanan, Y. Sheikh Recycle-GAN: Unsupervised Video Retargeting. In ECCV, Sept. 2018.

Playing games

The front cover of Nature, in late January, 2016.

Joakim Lindblad joakim@cb.uu.se

ImageNet Large Scale Visual Recognition Challenge



Andrej Karpath¥ blog

The state of Computer Vision and AI: we are really, really far away.

Oct 22, 2012

The picture above is funny.

How does a neural network work?

A linear classifier and how to train it

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

Image classification

Switching to Stanford slides...

CS231n: Convolutional Neural Networks for Visual Recognition

Image Classification: a core task in Computer Vision

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

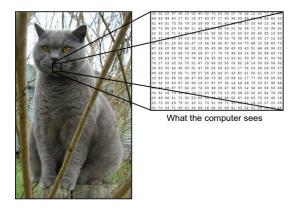
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 6 6 Jan 2016

The problem: *semantic gap*

Images are represented as 3D arrays of numbers, with integers between [0, 255].

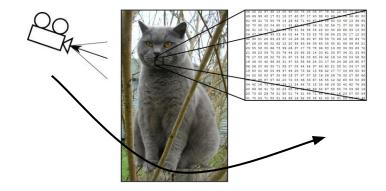
E.g. 300 x 100 x 3

(3 for 3 color channels RGB)



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 7 6 Jan 2016

Challenges: Viewpoint Variation



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 8 6 Jan 2016

Challenges: Illumination

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 9 6 Jan 2016

Challenges: Deformation

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 2 - 10

Challenges: Occlusion

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 11 6 Jan 2016

Challenges: Background clutter

Fei-Fei Li & Andrej Karpathy & Justin JohnsonLecture 2 - 126 Jan 2016

Challenges: Intraclass variation

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 2 - 13

An image classifier

def predict(image):
 # ????
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 14 6 Jan 2016

Data-driven approach:

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train an image classifier
- 3. Evaluate the classifier on a withheld set of test images

Example training set

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 16 6 Jan 2016

CERNING DAY BLACK BOX

Data driven approach to image classification

Task: Design a classifier f(x, W) that tells us which class $y_i \in \{1, 2, ..., N\}$ an image x_i belongs to.

Approach:

- Select a classifier type
 - we start with a linear (affine) classifier y = Wx + b
- Select a performance measure
 - I'll mention two loss functions
- For your data set, find the parameters W which maximize performance, that is, minimize the overall loss
 - This is the "learning" part

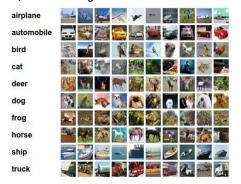
airplane	🔤 🌇 🔛 📈 🍬 📼 🛃 🎆 🚤 🍇
automobile	an a
bird	in the second
cat	in i
deer	- Mi 🕅 🔀 🥽 🦛 🎆 🖓 🕅 📰 😫
dog	N 🗶 🤜 🥂 🉈 🖉 📢 🔊 🗓
frog	
horse	🎬 🕾 🕸 🚵 🕅 📷 🖾 🎆 🚺
ship	🧮 🛃 🚢 🕍 🚘 💋 🖉 🜌
truck	🛁 🍱 🚛 🌉 👹 🔤 📷 🚵 🕋 🕷

Example dataset: CIFAR-10 10 labels 50,000 training images each image is 32x32x3 10,000 test images.

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 2 - 46

Example dataset: **CIFAR-10 10** labels **50,000** training images **10,000** test images.



For every test image (first column), examples of nearest neighbors in rows

Fei-Fei Li & Andrej Karpathy & Justin Johnson Le

Lecture 2 - 19

Linear Classification

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 2 - 41

Parametric approach

(A)

image parameters
 f(x,W)

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 47 6 Jan 2016

Parametric approach: Linear classifier

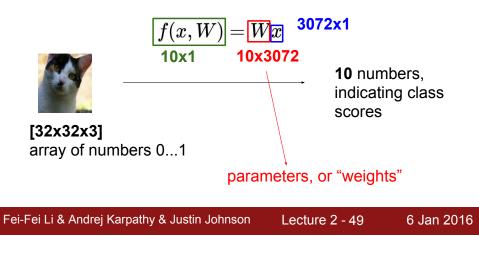
$$f(x,W) = Wx$$

10 numbers, indicating class scores

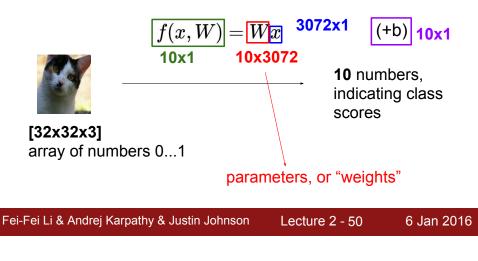
[32x32x3] array of numbers 0...1

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 48 6 Jan 2016

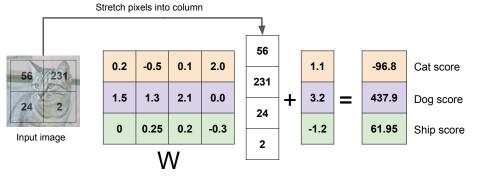
Parametric approach: Linear classifier



Parametric approach: Linear classifier



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 55

April 6, 2017

CERNING DAY BLACK BOX

Data driven approach to image classification

Task: Design a classifier f(x, W) that tells us which class $y_i \in \{1, 2, ..., N\}$ an image x_i belongs to.

Approach:

- Select a classifier type
 - we start with a linear (affine) classifier y = Wx + b
- Select a performance measure
 - SVM loss (a.k.a. hinge loss) or SoftMax.
- For your data set, find the parameters W which maximize performance, that is, minimize the overall loss
 - This is the "learning" part

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 7 11 Jan 2016

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson

-1.7

cat

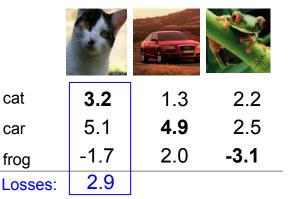
car

frog

Lecture 3 - 8

11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

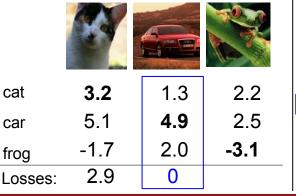
 $\begin{bmatrix}
 L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\
 = \max(0, 5.1 - 3.2 + 1) \\
 +\max(0, -1.7 - 3.2 + 1) \\
 = \max(0, 2.9) + \max(0, -3.9) \\
 = 2.9 + 0 \\
 = 2.9
 \end{bmatrix}$ Lecture 3 - 9 11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat

car

frog



Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where u_i is the (integer) label,

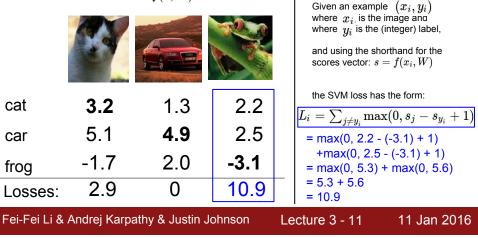
and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0= 011 Jan 2016 Lecture 3 - 10

Multiclass SVM loss:

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:



cat	3.2	1.3	2.2	
car	5.1	4.9	2.5	
frog	-1.7	2.0	-3.1	
Losses:	2.9	0	10.9	-

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

= (2.9 + 0 + 10.9)/3
= **4.6**

11 Jan 2016

Lecture 3 - 12

Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: what if the sum was instead over all classes? (including j = y_i)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 13 11 Jan 2016

cat **3.2** car 5.1

frog -1.7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 25 11 Jan 2016

scores = unnormalized log probabilities of the classes.

$$s = f(x_i; W)$$

3.2 cat 5.1 car -1.7

frog

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 26 11 Jan 2016

scores = unnormalized log probabilities of the classes.

where

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

$$s=f(x_i;W)$$

cat **3.2** car 5.1 frog -1.7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 27 11 Jan 2016

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

$$s=f(x_i;W)$$

cat	3.2
car	5.1
frog	-1.7

Softmax function

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 28 11 Jan 2016

3.2

51

-1.7

cat

car

frog

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{array}{c} s=f(x_i;W) \end{array}$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 29 11 Jan 2016

3.2

51

-1.7

cat

car

frog

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s=f(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

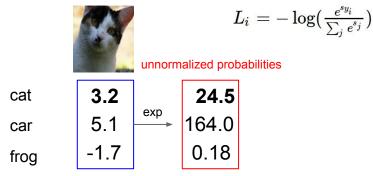
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 30 11 Jan 2016

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat car frog

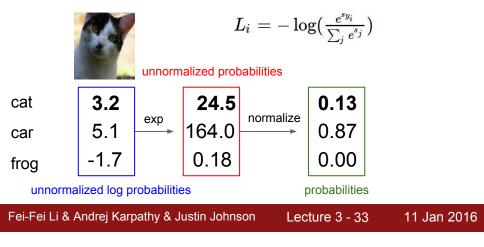
unnormalized log probabilities

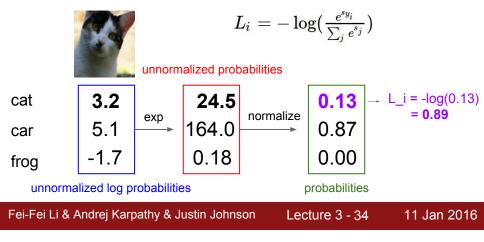
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 31 11 Jan 2016

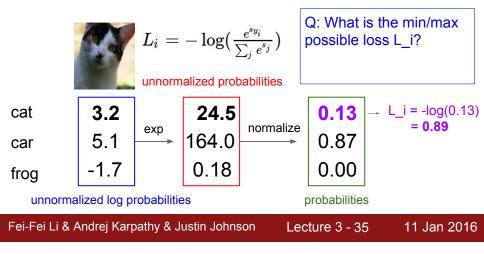


unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 32 11 Jan 2016







CERNING DAY BLACK BOX

Data driven approach to image classification

Task: Design a classifier f(x, W) that tells us which class $y_i \in \{1, 2, ..., N\}$ an image x_i belongs to.

Approach:

- Select a classifier type
 - we start with a linear (affine) classifier y = Wx + b
- Select a performance measure
 - SVM loss (a.k.a. hinge loss) or SoftMax.
- For your data set, find the parameters W which maximize performance, that is, minimize the overall loss
 - This is the "learning" part

Data driven approach to image classification

Minimize the loss over the training data

$\mathop{\arg\min}_{W} \operatorname{loss}(\operatorname{training} \, \operatorname{data})$

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 45 11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 46 11 Jan 2016

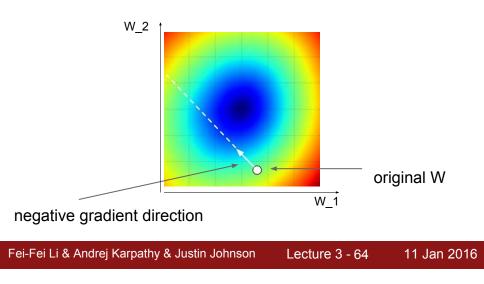
Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives).

Fei-Fei Li & Andrej Karpathy & Justin JohnsonLecture 3 - 4711 Jan 2016



Data driven approach to image classification

Minimize the loss over the training data

 $\mathop{\arg\min}_{W} \mathsf{loss}(\mathsf{training \ data})$

using Gradient Descent to minimize the loss L:

- 1 Initialize weights W_0
- 2 Compute the gradient w.r.t. W, $\nabla L(W_k; \vec{x}) = (\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, \ldots)$
- 3 Take a small step in the direction of the negative gradient $W_{k+1} = W_k \text{stepsize} \cdot \nabla L$
- 4 Iterate from (2) until convergence

Demo 1

Linear classifier

https://cs.stanford.edu/people/karpathy/convnetjs/ demo/classify2d.html

```
layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:1, activation:'tanh'});
layer_defs.push({type:'svm', num_classes:2});
net = new convnetjs.Net();
net.makeLayers(layer_defs);
```

trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

Linear classifiers and their limits

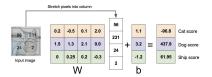
Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

f(x,W) = Wx

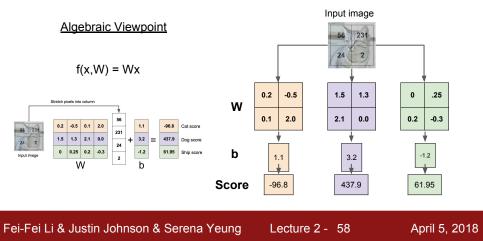


Fei-Fei Li & Justin Johnson & Serena Yeung

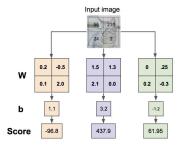
Lecture 2 - 57

April 5, 2018

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Interpreting a Linear Classifier

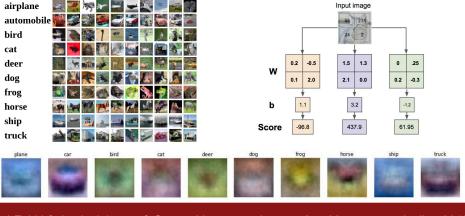


Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 59

April 5, 2018

Interpreting a Linear Classifier: Visual Viewpoint

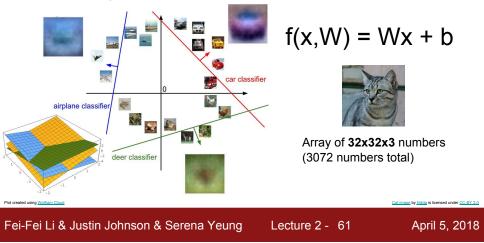


Fei-Fei Li & Justin Johnson & Serena Yeung

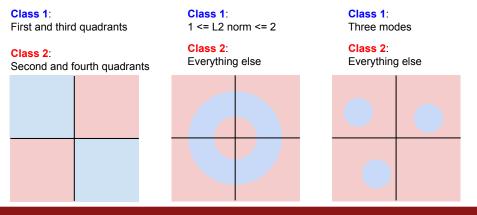
Lecture 2 - 60

April 5, 2018

Interpreting a Linear Classifier: Geometric Viewpoint



Hard cases for a linear classifier



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 62

April 5, 2018

Neural networks – stacked non-linear classifiers

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 61 13 Jan 2016

Neural Network: without the brain stuff

(Before) Linear score function:

f = Wx

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 62 13 Jan 2016

Neural Network: without the brain stuff

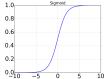
(Before) Linear score function:

(Now) 2-layer Neural Network

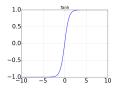
$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 63 13 Jan 2016

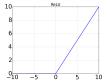
Activation functions



sigmoid(x) =
$$\frac{1}{1+e^{-x}}$$



$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2sigmoid(2x) - 1$$



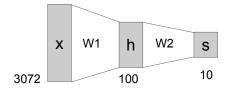
$$ReLU(x) = max(0, x)$$

Neural Network: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 64 13 Jan 2016

Neural Network: without the brain stuff

(Before) Linear score function:

$$f = Wx$$

$$f=W_2\max(0,W_1x)$$

 $f=W_3\max(0,W_2\max(0,W_1x))$

Simple Neural network classifier

https://cs.stanford.edu/people/karpathy/convnetjs/ demo/classify2d.html

Deep Convolutional Neural Network

Joakim Lindblad joakim@cb.uu.se

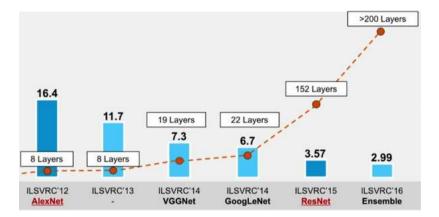
Deep Learning for Image Analysis

Universal approximators...

Google Scholar	neural networks are universal approximators
Articles	About 23,500 results (0.08 sec)
Any time	Multilayer feedforward networks are universal approximators
Since 2018	K Hornik, M Stinchcombe, H White - Neural networks, 1989 - Elsevier
Since 2017	This paper rigorously establishes that standard multilayer feedforward networks with as few
Since 2014	as one hidden layer using arbitrary squashing functions are capable of approximating any
Custom range	Borel measurable function from one finite dimensional space to another to any desired $ mathac{1}{C}$ 99 Cited by 15636 Related articles All 12 versions Web of Science: 6171
Sort by relevance	FU77V systems as universal annroximators

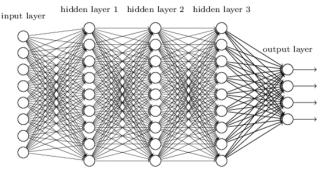
A feed-forward network with a **single** hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of R^n

Going deeper...



Deeper networks seem to generalize better...

What used to be seen as a deep neural network... Deep neural network



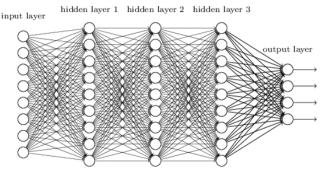
Fully connected Neural network

Src. http://www.rsipvision.com/exploring-deep-learning/

Exponential growth of the number of weights! Can we be smarter?

Joakim Lindblad joakim@cb.uu.se

What used to be seen as a deep neural network... Deep neural network



Fully connected Neural network

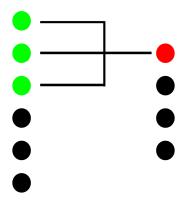
Src. http://www.rsipvision.com/exploring-deep-learning/

Exponential growth of the number of weights! Can we be smarter? Recycle the weights!

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

Sharing weights over the image



Contains convolutional layers

- Only local connections
- Spatial relationship is preserved
- Parameter sharing
- Widely used in image analysis

Convolutional neural network

Sharing weights over the image

Contains convolutional layers

- Only local connections
- Spatial relationship is preserved
- Parameter sharing
- Widely used in image analysis

FERENER

Convolutional neural network

Sharing weights over the image

Contains convolutional layers

- Only local connections
- Spatial relationship is preserved
- Parameter sharing
- Widely used in image analysis

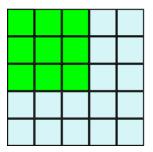
GENERAL

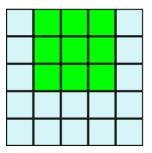
Convolutional neural network

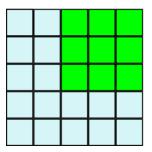
Sharing weights over the image

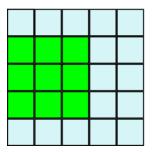
Contains convolutional layers

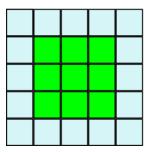
- Only local connections
- Spatial relationship is preserved
- Parameter sharing
- Widely used in image analysis

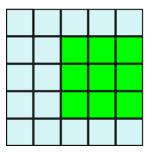


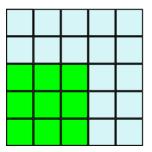


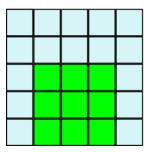


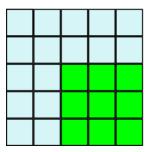






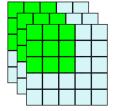




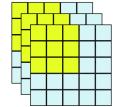


3d convolutions

Layer 1

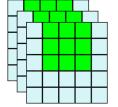


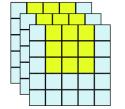
Layer 2



- Filter coefficients are learned from data
- Can be implemented as matrix multiplication (faster)
- Efficient GPU implementations are possible
- Implemented as tensor multiplications/additions
- Hierarchical feature extraction

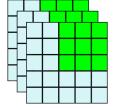
3d convolutions



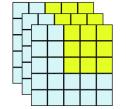


- Filter coefficients are learned from data
- Can be implemented as matrix multiplication (faster)
- Efficient GPU implementations are possible
- Implemented as tensor multiplications/additions
- Hierarchical feature extraction

3d convolutions



Layer 2

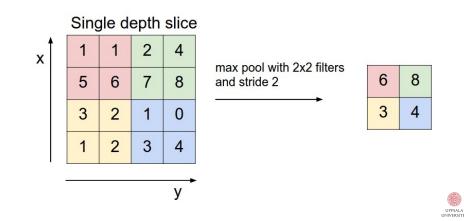


- Filter coefficients are learned from data
- Can be implemented as matrix multiplication (faster)
- Efficient GPU implementations are possible
- Implemented as tensor multiplications/additions
- Hierarchical feature extraction

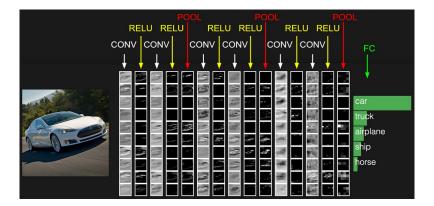
Pooling

Reduce the spatial size of the data - Subsampling

Instead of average (small important parts get lost in the crowd), pick the maximal (most important) response.

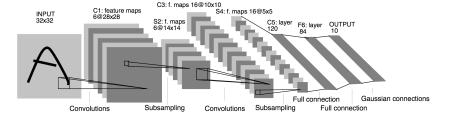


A complete Convolutional Neural Network (CNN, ConvNet)



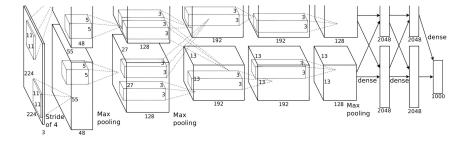
STREET BARDING

Lenet

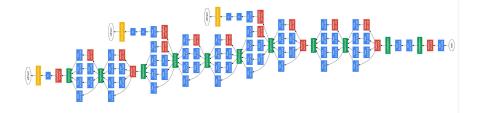


Src. Yann LeCun, et al, Gradient-based learning applied to document recognition, 1998

Alexnet



Src. Alex Krishevsky et al, ImageNet Classification with Deep Convolutional Neural Networks, 2012



Src. Going deeper with convolutions

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

Shallow vs. Deep Learning

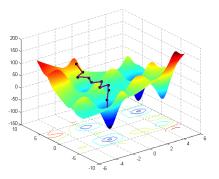
Classic "Shallow" Machine Learning vs. Deep Learning

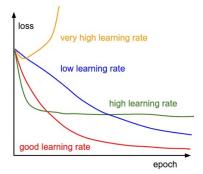
or centification

Joakim Lindblad joakim@cb.uu.se

- Choice of Loss function to minimize
- Stochastic Gradient Descent and its variants
- Initialization
- Hyper parameters
- Problems of over fitting, local minima, saddle points, vanishing gradients
- Regularization

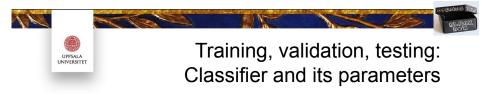
Stochastic Gradient descent





Learning rate

Src. http://www.phoenixint.com/software/benchmark_report/bird.php



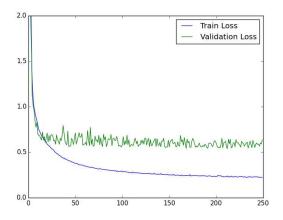
Divide the set of all available labeled samples (patterns) into: training, validation, and test sets.

Training set: Represents data faithfully and reflects all the variation. Contains large number of training samples. Used to define the classifier.

Validation set: Used to tune the parameters of the classifier.

(Bias –Variance trade-off to prevent over-fitting) **Test set:** Used for final evaluation (estimation) of the classifier's performance on the samples not used during the training.

Training, validation, testing



Remember to keep your test set locked away!

DARKING C

Summary

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

- Learns from its mistakes.
- Contains hundreds of parameters/variables.
- Find the effect of each parameter when making mistakes.
- Increase/decrease the parameter values as to make less mistakes.
- Do all the above several times.

- Learns from its mistakes. Loss function
- Contains hundreds of parameters/variables.
- Find the effect of each parameter when making mistakes.
- Increase/decrease the parameter values as to make less mistakes.
- Do all the above several times.

- Learns from its mistakes. Loss function
- Contains hundreds of parameters/variables.
- Find the effect of each parameter when making mistakes. Back propagation
- Increase/decrease the parameter values as to make less mistakes.
- Do all the above several times.

How does a neural network learn?

- Learns from its mistakes. Loss function
- Contains hundreds of parameters/variables.
- Find the effect of each parameter when making mistakes. Back propagation
- Increase/decrease the parameter values so as to make less mistakes. Stochastic Gradient Descent
- Do all the above several times.

How does a neural network learn?

- Learns from its mistakes. Loss function
- Contains hundreds of parameters/variables.
- Find the effect of each parameter when making mistakes. Back propagation
- Increase/decrease the parameter values so as to make less mistakes. Stochastic Gradient Descent
- Do all the above several times. Iterations

http://cs.stanford.edu/people/karpathy/convnetjs/

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

What we have learnt so far

Recap

- A linear classifier *y* = *Wx* encoding a "one hot" vector
- Two loss functions (performance measures) L(x; W), hinge loss (SVM loss) and multiclass cross-entropy

- softmax =
$$\frac{e^{s_{y_i}}}{\sum_j e^{s_{y_j}}}$$
, loss: L = - log(softmax)

- Touched upon Gradient descent for minimizing the loss
- Send the output through a nonlinearity (activation function) y = f(Wx), e.g. ReLU.
- Send the output to another classifier, and another...
 y = f(W₃f(W₂f(W₁x))) = Neural network

What we have learnt so far

Recap

• Training the network = find the weights *W* which minimize the loss $L(W; \vec{x})$

$$\arg\min_{W} L(W; \vec{x})$$

- Gradient descent to minimize the loss *L*:
 - 1 Initialize weights W_0
 - 2 Compute the gradient w.r.t. W, $\nabla L(W_k; \vec{x}) = (\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, \ldots)$
 - 3 Take a small step in the direction of the negative gradient $W_{k+1} = W_k$ stepsize $\cdot \nabla L$
 - 4 Iterate from (2) until convergence

Recap

What we have learnt so far

- How to compute the derivatives $\nabla L(W_k; \vec{x}) = (\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, \ldots)$
- Use a computational graph (impractical to write out the looong equation)
- Back propagation "Backprop"
- Using the chain rule, derivatives are propagating backwards up through the net $\frac{\partial L}{\partial \text{input}} = \frac{\partial L}{\partial \text{output}} \frac{\partial \text{output}}{\partial \text{input}}$
 - forward: compute result of an operation and save any intermediates needed for gradient computation in memory
 - backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Bonus material

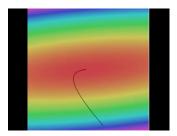
Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis

How to compute derivatives - Backpropagation

- Gradient descent to minimize the loss *L*:
 - 1 Initialize weights W₀
 - 2 Compute the gradient w.r.t. W, $\nabla L(W_k; \vec{x}) = (\frac{\partial L}{\partial W_k}, \frac{\partial L}{\partial W_k}, \dots)$
 - 3 Take a small step in the direction of the negative gradient $W_{k+1} = W_k \text{stepsize} \cdot \nabla L$
 - 4 Iterate from (2) until convergence
- Backprop: Using the chain rule, derivatives are propagating backwards up through the net $\frac{\partial L}{\partial \text{input}} = \frac{\partial L}{\partial \text{output}} \frac{\partial \text{output}}{\partial \text{input}}$
 - forward: compute result of an operation and save any intermediates needed for gradient computation in memory
 - backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Optimization



Vanilla Gradient Descent

while True:

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 6

April 13, 2017

Gradient descent

Fei-Fei Li & Justin Johnson & Serena Yeung

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

Lecture 4 - 7

In practice: Derive analytic gradient, check your implementation with numerical gradient

Neural Network: without the brain stuff

(Before) Linear score function:

$$f = Wx$$

$$f=W_2\max(0,W_1x)$$

 $f=W_3\max(0,W_2\max(0,W_1x))$

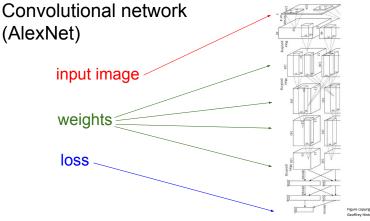


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 9

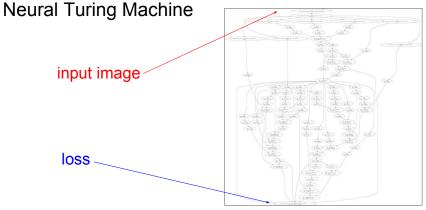
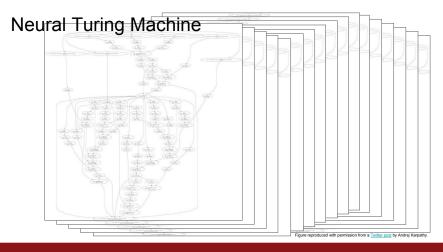


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

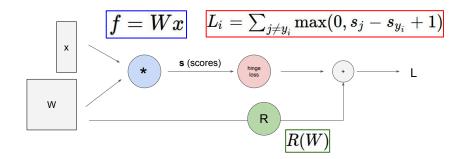
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 10



Lecture 4 -

Computational graphs



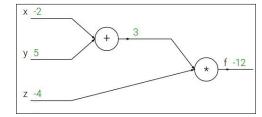
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 8

Backpropagation: a simple example

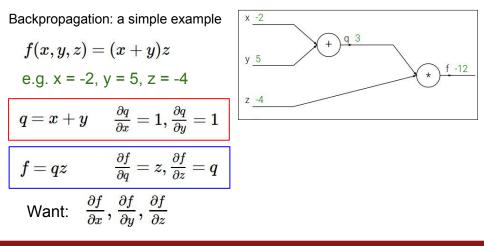
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

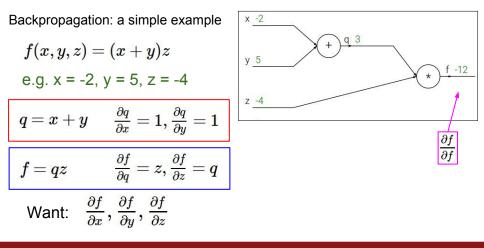


Fei-Fei Li & Justin Johnson & Serena Yeung

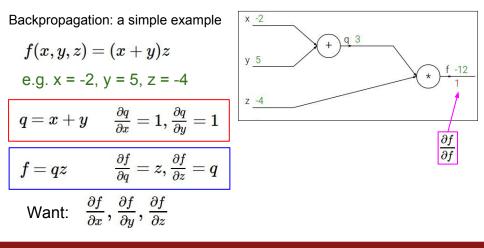
Lecture 4 - 12



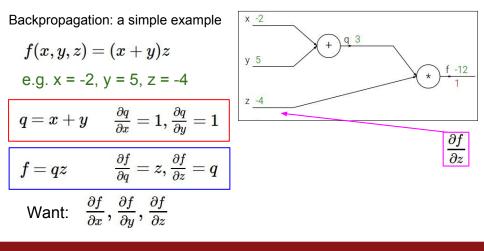
Lecture 4 - 13



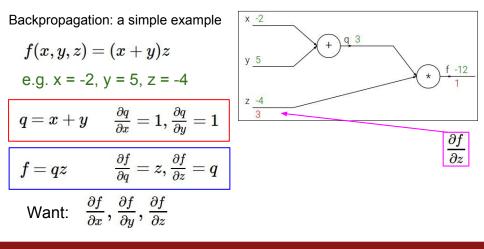
Lecture 4 - 14



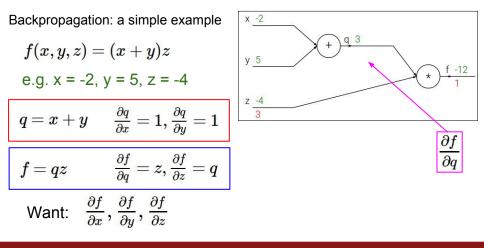
Lecture 4 - 15



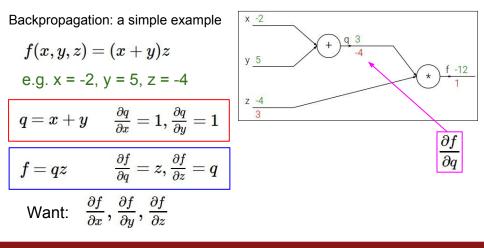
Lecture 4 - 16



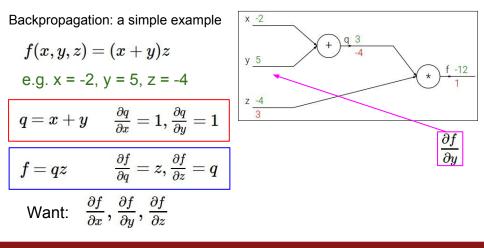
Lecture 4 - 17



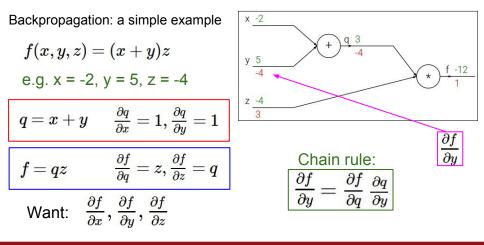
Lecture 4 - 18



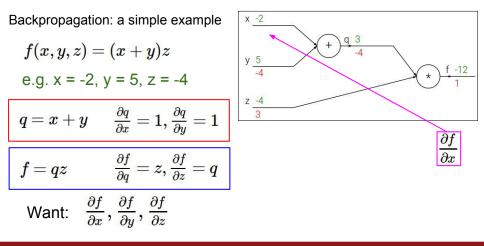
Lecture 4 - 19



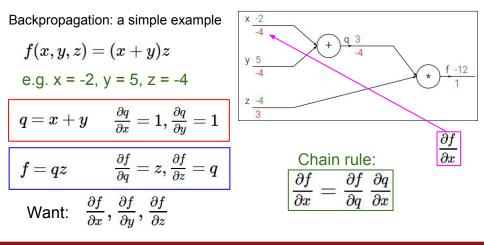
Lecture 4 - 20



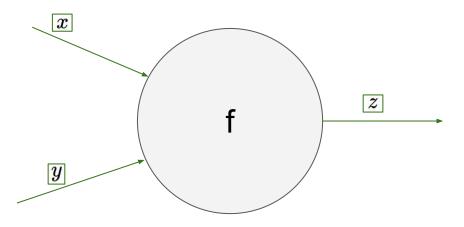
Lecture 4 - 21



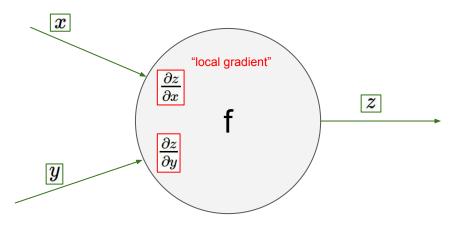
Lecture 4 - 22



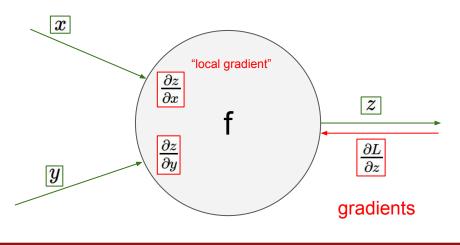
Lecture 4 - 23



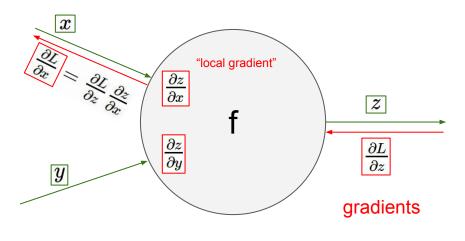
Lecture 4 - 24



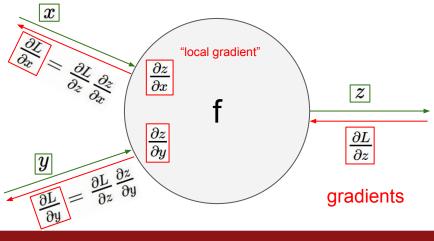
Lecture 4 - 25



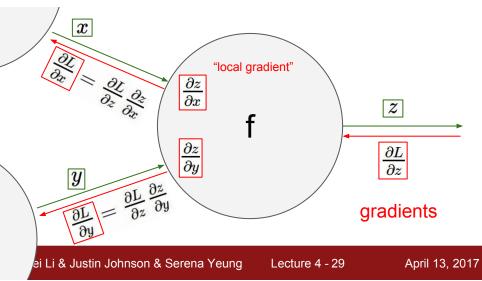
Lecture 4 - 26



Lecture 4 - 27

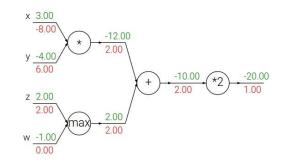


Lecture 4 - 28



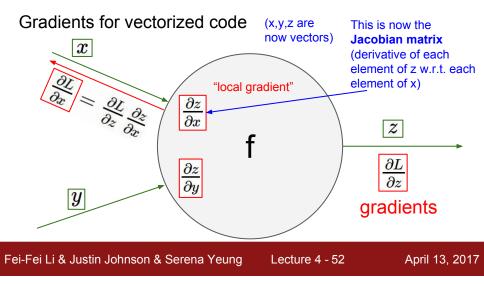
Patterns in backward flow

add gate: gradient distributor max gate: gradient router mul gate: gradient switcher

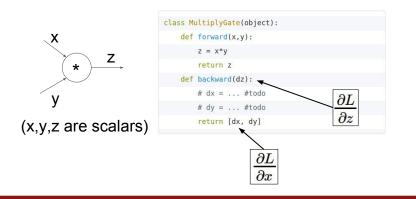


Fei-Fei Li & Justin Johnson & Serena Yeung Lectu

Lecture 4 - 50

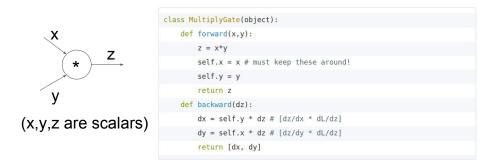


Modularized implementation: forward / backward API



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 76 April 13, 2017

Modularized implementation: forward / backward API



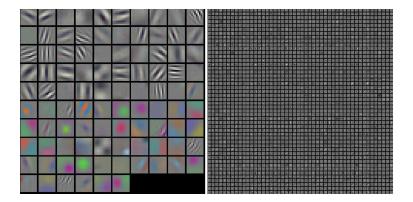
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 77

Yes you should understand backprop!

https://medium.com/@karpathy/
yes-you-should-understand-backprop-e2f06eab496b

Filter visualization

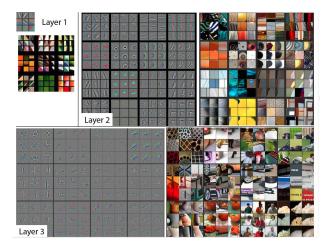


First and second layer features of Alexnet

Src. http://cs231n.github.io/understanding-cnn/

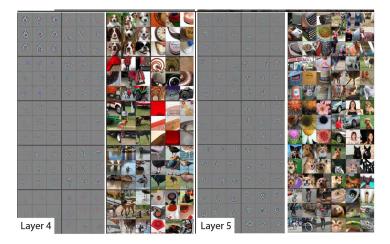
Joakim Lindblad joakim@cb.uu.se

Filter visualization



Src. Matthew D. Zeiler, et al, Visualizing and Understanding Convolutional Networks, ECCV 2014

Filter visualization



Src. Matthew D. Zeiler, et al, Visualizing and Understanding Convolutional Networks, ECCV 2014

DeepDream is a program created by Google engineer Alexander Mordvintsev

Finds and enhances patterns in images via algorithmic pareidolia, thus creating a dream-like hallucinogenic appearance in the deliberately over-processed images.

The optimization resembles Backpropagation, however instead of adjusting the network weights, the weights are held fixed and the input is adjusted.

Pouff - Grocery Trip
https://www.youtube.com/watch?v=DgPaCWJL7XI

Further reads/links

