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Further reads/links
Get going in MATLAB
https://se.mathworks.com/help/nnet/examples/create-simple-deep-learning-network-for-classification.html

Machine learning by Andrew Ng (Coursera)
https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW

Stanford CS231n deep learning course by Fei Fei’s group, 2016 version (skip to 2nd lecture, w. Andrej Karpathy)
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA&index=1

2017 version https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

Recent deep learning summer school in Toronto http://videolectures.net/DLRLsummerschool2018_toronto/

Ian Goodfellows book on deep learning http://www.deeplearningbook.org/

Stat212b: Topics Course on Deep Learning http://joanbruna.github.io/stat212b/

fast.ai Making neural nets uncool again http://www.fast.ai/

Yann LeCun’s “Gradient-based learning applied to document recognition”
http://ieeexplore.ieee.org/document/726791/?arnumber=726791

An overview of gradient descent optimization algorithms http://ruder.io/optimizing-gradient-descent/

WILDML http://www.wildml.com/

Deep Learning Glossary http://www.wildml.com/deep-learning-glossary/

colah’s blog http://colah.github.io/

https://icml.cc/Conferences/2017/Tutorials , https://icml.cc/2016/index.html

https://arxiv.org

http://www.aiindex.org/2017-report.pdf

And many many more . . .
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Introduction

Deep neural networks, the current
state-of-the-art in classification.

Deep learning algorithms are consistently
winning the major competitions.

Can learn hierarchical features from the input,
together with the classification.
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Object detection

Hui Li, et al., Reading Car License Plates Using Deep
Convolutional Neural Networks and LSTMs. Jan 2016
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Cell segmentation

Olaf Ronneberger, et al., U-Net: Convolutional Networks for
Biomedical Image Segmentation, MICCAI 2015
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Medical image segmentation

Konstantinos Kamnitsas et al., Efficient multi-scale 3D CNN
with fully connected CRF for accurate brain lesion
segmentation. February 2017
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Super resolution

Ryan Dahl, et al, Pixel Recursive Super Resolution, February
2017
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Face transfer/lip-syncing

A. Bansal, S. Ma, D. Ramanan, Y. Sheikh Recycle-GAN:
Unsupervised Video Retargeting. In ECCV, Sept. 2018.
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Playing games

The front cover of Nature, in late January, 2016.
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ImageNet Large Scale
Visual Recognition Challenge

Top 5 error

1000 classes

1.2 million images

From 2012 onwards all
won by deep CNNs
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How does a neural network work?
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A linear classifier
and how to train it
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Problem formulation

Image classification

Switching to Stanford slides. . .

CS231n: Convolutional Neural Networks for Visual Recognition
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http://cs231n.stanford.edu/


Lecture 2 - 6 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 6 Jan 20166

Image Classification: a core task in Computer Vision

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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The problem:
semantic gap

Images are represented as 
3D arrays of numbers, with 
integers between [0, 255].

E.g. 
300 x 100 x 3 

(3 for 3 color channels RGB)
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Challenges: Viewpoint Variation
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Challenges: Illumination
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Challenges: Deformation
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Challenges: Occlusion
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Challenges: Background clutter
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Challenges: Intraclass variation
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An image classifier

Unlike e.g. sorting a list of numbers,
 
no obvious way to hard-code the algorithm for 
recognizing a cat, or other classes.
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Data-driven approach:
1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images

Example training set



Data driven approach to image classification

Task: Design a classifier f (x, W ) that tells us which class
yi ∈ {1, 2, . . . , N} an image xi belongs to.

Approach:

1 Select a classifier type

– we start with a linear (affine) classifier y = Wx + b

2 Select a performance measure

– I’ll mention two loss functions

3 For your data set, find the parameters W which maximize
performance, that is, minimize the overall loss

– This is the "learning" part
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Example dataset: CIFAR-10
10 labels 
50,000 training images
   each image is 32x32x3
10,000 test images.
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For every test image (first column), 
examples of nearest neighbors in rows

Example dataset: CIFAR-10
10 labels 
50,000 training images
10,000 test images.
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Linear Classification
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Parametric approach

[32x32x3]
array of numbers 0...1
(3072 numbers total)

f(x,W)
image parameters

10 numbers, 
indicating class 
scores
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Parametric approach: Linear classifier

[32x32x3]
array of numbers 0...1

10 numbers, 
indicating class 
scores
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Parametric approach: Linear classifier

[32x32x3]
array of numbers 0...1

10 numbers, 
indicating class 
scores

3072x1

10x1 10x3072

parameters, or “weights”
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Parametric approach: Linear classifier

[32x32x3]
array of numbers 0...1

10 numbers, 
indicating class 
scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 201755

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score



Data driven approach to image classification

Task: Design a classifier f (x, W ) that tells us which class
yi ∈ {1, 2, . . . , N} an image xi belongs to.

Approach:

1 Select a classifier type

– we start with a linear (affine) classifier y = Wx + b

2 Select a performance measure

– SVM loss (a.k.a. hinge loss) or SoftMax.

3 For your data set, find the parameters W which maximize
performance, that is, minimize the overall loss

– This is the "learning" part
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1) 
   +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.92.9Losses:
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 00Losses: 2.9
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 2.2 - (-3.1) + 1) 
   +max(0, 2.5 - (-3.1) + 1)
= max(0, 5.3) + max(0, 5.6)
= 5.3 + 5.6
= 10.90Losses: 2.9 10.9
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 10.9

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

and the full training loss is the mean 
over all examples in the training data:

L = (2.9 + 0 + 10.9)/3 
   = 4.6
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 10.9

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q: what if the sum 
was instead over all 
classes? 
(including j = y_i)
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7

where



Lecture 3 - 11 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 11 Jan 201628

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

cat

frog

car

3.2
5.1
-1.7

where

Softmax function
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:cat

frog

car

3.2
5.1
-1.7

where
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Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes. 

Want to maximize the log likelihood, or (for a loss function) 
to minimize the negative log likelihood of the correct class:cat

frog

car

3.2
5.1
-1.7 in summary:

where
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp

unnormalized probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

unnormalized log probabilities

24.5
164.0
0.18

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
      = 0.89

Q: What is the min/max 
possible loss L_i?



Data driven approach to image classification

Task: Design a classifier f (x, W ) that tells us which class
yi ∈ {1, 2, . . . , N} an image xi belongs to.

Approach:

1 Select a classifier type

– we start with a linear (affine) classifier y = Wx + b

2 Select a performance measure

– SVM loss (a.k.a. hinge loss) or SoftMax.

3 For your data set, find the parameters W which maximize
performance, that is, minimize the overall loss

– This is the "learning" part
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Data driven approach to image classification

Minimize the loss over the training data

arg min
W

loss(training data)
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).
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original W

negative gradient direction
W_1

W_2



Data driven approach to image classification

Minimize the loss over the training data

arg min
W

loss(training data)

using Gradient Descent to minimize the loss L:

1 Initialize weights W0

2 Compute the gradient w.r.t. W , ∇L(Wk;~x) = ( ∂L
∂w1

, ∂L
∂w2

, . . .)

3 Take a small step in the direction of the negative gradient
Wk+1 = Wk − stepsize · ∇L

4 Iterate from (2) until convergence
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Demo 1

Linear classifier
https://cs.stanford.edu/people/karpathy/convnetjs/

demo/classify2d.html

layer_defs = [];

layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});

layer_defs.push({type:'fc', num_neurons:1, activation:'tanh'});

layer_defs.push({type:'svm', num_classes:2});

net = new convnetjs.Net();

net.makeLayers(layer_defs);

trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Linear classifiers and their limits
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 201857

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

f(x,W) = Wx

Algebraic Viewpoint
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95
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Interpreting a Linear Classifier

59
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Interpreting a Linear Classifier: Visual Viewpoint

60
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Interpreting a Linear Classifier: Geometric Viewpoint

61

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 5, 2018

Hard cases for a linear classifier

62

Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else



Neural networks – stacked
non-linear classifiers
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Neural Network: without the brain stuff

(Before) Linear score function:
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Neural Network: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
      



Activation functions

sigmoid(x) = 1
1+e−x

tanh(x) = ex−e−x

ex+e−x = 2sigmoid(2x) − 1

ReLU(x) = max(0, x)

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201664

Neural Network: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
      

x hW1 sW2

3072 100 10
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Neural Network: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
       or 3-layer Neural Network



Demo 2

Simple Neural network classifier

https://cs.stanford.edu/people/karpathy/convnetjs/

demo/classify2d.html
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Deep Convolutional Neural
Network
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Universal approximators. . .

A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate continuous functions
on compact subsets of Rn
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Going deeper. . .

Deeper networks seem to generalize better. . .
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What used to be seen as a deep neural network. . .

Fully connected Neural network
Src. http://www.rsipvision.com/exploring-deep-learning/

Exponential growth of the number of weights!

Can we be smarter?
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What used to be seen as a deep neural network. . .

Fully connected Neural network
Src. http://www.rsipvision.com/exploring-deep-learning/

Exponential growth of the number of weights!

Can we be smarter? Recycle the weights!
Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Convolutional neural network
Sharing weights over the image

Contains convolutional layers

Only local connections

Spatial relationship is
preserved

Parameter sharing

Widely used in image
analysis
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2d convolutions
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2d convolutions
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3d convolutions

Filter coefficients are
learned from data

Can be implemented as
matrix multiplication
(faster)

Efficient GPU
implementations are
possible

Implemented as tensor
multiplications/additions

Hierarchical feature
extraction
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Pooling
Reduce the spatial size of the data – Subsampling

Instead of average (small important parts get lost in the crowd),
pick the maximal (most important) response.
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A complete Convolutional Neural Network (CNN, ConvNet)
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Lenet

Src. Yann LeCun, et al, Gradient-based learning applied to document recognition, 1998
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Alexnet

Src. Alex Krishevsky et al, ImageNet Classification with Deep Convolutional Neural Networks, 2012
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Googlenet

Src. Going deeper with convolutions
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Shallow vs. Deep Learning

Classic “Shallow” Machine Learning vs. Deep Learning
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Optimization

Choice of Loss function to minimize

Stochastic Gradient Descent and its variants

Initialization

Hyper parameters

Problems of over fitting, local minima, saddle
points, vanishing gradients

Regularization
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Stochastic Gradient descent

Src. http://www.phoenix-
int.com/software/benchmark_report/bird.php

Learning rate
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Training, validation, testing:

Classifier and its parameters

Divide the set of all available labeled samples (patterns) into:

training, validation, and test sets.

Training set: Represents data faithfully and reflects all the variation. 

Contains large number of training samples. 

Used to define the classifier. 

Validation set: Used to tune the parameters of the classifier. 

(Bias –Variance trade-off to prevent over-fitting)

Test set: Used for final evaluation (estimation) of the classifier’s                      
performance on the samples not used during the training. 



Training, validation, testing

Remember to keep your test set locked away!
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Summary
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How does a neural network learn?

Learns from its mistakes.

Contains hundreds of parameters/variables.

Find the effect of each parameter when making
mistakes. Back propagation

Increase/decrease the parameter values as to
make less mistakes.

Do all the above several times.
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How does a neural network learn?

Learns from its mistakes. Loss function

Contains hundreds of parameters/variables.

Find the effect of each parameter when making
mistakes. Back propagation

Increase/decrease the parameter values so as
to make less mistakes. Stochastic Gradient
Descent

Do all the above several times.
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How does a neural network learn?

Learns from its mistakes. Loss function

Contains hundreds of parameters/variables.

Find the effect of each parameter when making
mistakes. Back propagation

Increase/decrease the parameter values so as
to make less mistakes. Stochastic Gradient
Descent

Do all the above several times. Iterations
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Demo

http://cs.stanford.edu/people/karpathy/convnetjs/

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis
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Recap
What we have learnt so far

A linear classifier y = Wx encoding a "one hot" vector

Two loss functions (performance measures) L(x; W ),
hinge loss (SVM loss) and multiclass cross-entropy

– softmax = e
syi∑
j
e

syj
, loss: L = − log(softmax)

Touched upon Gradient descent for minimizing the loss

Send the output through a nonlinearity (activation
function) y = f (Wx), e.g. ReLU.

Send the output to another classifier, and another...
y = f (W3f (W2f (W1x))) = Neural network
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Recap
What we have learnt so far

Training the network = find the weights W which minimize
the loss L(W ;~x)

arg min
W

L(W ;~x)

Gradient descent to minimize the loss L:

1 Initialize weights W0

2 Compute the gradient w.r.t. W ,
∇L(Wk;~x) = ( ∂L

∂w1
, ∂L

∂w2
, . . .)

3 Take a small step in the direction of the negative
gradient Wk+1 = Wk − stepsize · ∇L

4 Iterate from (2) until convergence
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Recap
What we have learnt so far

How to compute the derivatives ∇L(Wk;~x) = ( ∂L
∂w1

, ∂L
∂w2

, . . .)

Use a computational graph (impractical to write out the
looong equation)

Back propagation - "Backprop"

Using the chain rule, derivatives are propagating
backwards up through the net ∂L

∂input
= ∂L

∂output
∂output
∂input

◮ forward: compute result of an operation and save
any intermediates needed for gradient computation
in memory

◮ backward: apply the chain rule to compute the
gradient of the loss function with respect to the inputs

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Bonus material
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How to compute derivatives – Backpropagation

Gradient descent to minimize the loss L:

1 Initialize weights W0

2 Compute the gradient w.r.t. W , ∇L(Wk;~x) = ( ∂L
∂w1

, ∂L
∂w2

, . . .)

3 Take a small step in the direction of the negative gradient
Wk+1 = Wk − stepsize · ∇L

4 Iterate from (2) until convergence

Backprop: Using the chain rule, derivatives are propagating
backwards up through the net ∂L

∂input
= ∂L

∂output
∂output
∂input

◮ forward: compute result of an operation and save any
intermediates needed for gradient computation in memory

◮ backward: apply the chain rule to compute the gradient of
the loss function with respect to the inputs
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Optimization

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain
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Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient

Gradient descent
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Neural Network: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
       or 3-layer Neural Network
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input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 
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Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss
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Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 20178

x

W

hinge 
loss

R

+ L
s (scores)

Computational graphs

*
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e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example
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Chain rule:
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Backpropagation: a simple example
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Backpropagation: a simple example
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f
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f

“local gradient”
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gradients
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f

“local gradient”

gradients
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add gate: gradient distributor

Patterns in backward flow

max gate: gradient router

mul gate: gradient switcher
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f

“local gradient”

This is now the 
Jacobian matrix 
(derivative of each 
element of z w.r.t. each 
element of x)

(x,y,z are 
now vectors)

gradients

Gradients for vectorized code
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API



Yes you should understand backprop!

https://medium.com/@karpathy/

yes-you-should-understand-backprop-e2f06eab496b
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Filter visualization

First and second layer features of Alexnet

Src. http://cs231n.github.io/understanding-cnn/
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Filter visualization

Src. Matthew D. Zeiler, et al, Visualizing and Understanding Convolutional Networks, ECCV 2014
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Filter visualization

Src. Matthew D. Zeiler, et al, Visualizing and Understanding Convolutional Networks, ECCV 2014
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DeepDream

DeepDream is a program created by Google engineer Alexander
Mordvintsev

Finds and enhances patterns in images via algorithmic pareidolia, thus
creating a dream-like hallucinogenic appearance in the deliberately
over-processed images.

The optimization resembles Backpropagation, however instead of adjusting
the network weights, the weights are held fixed and the input is adjusted.

Pouff - Grocery Trip
https://www.youtube.com/watch?v=DgPaCWJL7XI

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis
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Further reads/links
Get going in MATLAB
https://se.mathworks.com/help/nnet/examples/create-simple-deep-learning-network-for-classification.html

Machine learning by Andrew Ng (Coursera)
https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW

Stanford CS231n deep learning course by Fei Fei’s group, 2016 version (skip to 2nd lecture, w. Andrej Karpathy)
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA&index=1

2017 version https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

Recent deep learning summer school in Toronto http://videolectures.net/DLRLsummerschool2018_toronto/

Ian Goodfellows book on deep learning http://www.deeplearningbook.org/

Stat212b: Topics Course on Deep Learning http://joanbruna.github.io/stat212b/

fast.ai Making neural nets uncool again http://www.fast.ai/

Yann LeCun’s “Gradient-based learning applied to document recognition”
http://ieeexplore.ieee.org/document/726791/?arnumber=726791

An overview of gradient descent optimization algorithms http://ruder.io/optimizing-gradient-descent/

WILDML http://www.wildml.com/

Deep Learning Glossary http://www.wildml.com/deep-learning-glossary/

colah’s blog http://colah.github.io/

https://icml.cc/Conferences/2017/Tutorials , https://icml.cc/2016/index.html

https://arxiv.org

http://www.aiindex.org/2017-report.pdf

And many many more . . .
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