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Further reads/links

Get going in MATLAB
https://se.mathworks.com/help/nnet/examples/create-simple-deep-learning-network-for-classification.html

Machine learning by Andrew Ng (Coursera)
https://www.youtube.com/playlist?1ist=PLZ9gNFMHZ-Ad4rycgrg0Yma6zxF4BZGGPW

Stanford CS231n deep learning course by Fei Fei’s group, 2016 version (skip to 2nd lecture, w. Andrej Karpathy)
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PL1Jy-eBtNFt6EuMxFYRiNRSO7MCWN5UIA&index=1
2017 version https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM81jYj-2zLfQRF3E08sYv

Recent deep learning summer school in Toronto http://videolectures.net/DLRLsummerschool12018_toronto/
lan Goodfellows book on deep learning http://www.deeplearningbook.org/

Stat212b: Topics Course on Deep Learning http://joanbruna.github.io/stat212b/

fast.ai Making neural nets uncool again http://www.fast.ai/

Yann LeCun’s “Gradient-based learning applied to document recognition”
http://ieeexplore.ieee.org/document/726791/?arnumber=726791

An overview of gradient descent optimization algorithms http://ruder.io/optimizing-gradient-descent/
WILDML http://www.wildml.com/

Deep Learning Glossary http://www.wildml.com/deep-learning-glossary/

colah’s blog http://colah.github.io/

https://icml.cc/Conferences/2017/Tutorials , https://icml.cc/2016/index.html
https://arxiv.org

http://www.aiindex.org/2017-report.pdf

And many many more ...
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Introduction

@ Deep neural networks, the current
state-of-the-art in classification.

@ Deep learning algorithms are consistently
winning the major competitions.

@ Can learn hierarchical features from the input,
together with the classification.
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Object detection

Hui Li, et al., Reading Car License Plates Using Deep
Convolutional Neural Networks and LSTMs. Jan 2016
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Cell segmentation

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Olaf Ronneberger, et al., U-Net: Convolutional Networks for
Biomedical Image Segmentation, MICCAI 2015
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Medical image segmentation

Brain MRI Convolutional Layers Classification Layer Segmentation

Automatically Learnt
Model of the Brain:

Konstantinos Kamnitsas et al., Efficient multi-scale 3D CNN
with fully connected CRF for accurate brain lesion
segmentation. February 2017

ALA
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Super resolution

8x 8 input 32 x 32 samples ground truth

Ryan Dahl, et al, Pixel Recursive Super Resolution, February ¢
2017
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Face transfer/lip-syncing | -

g —
| __&

lnhn DI ver ta Slephen Cnlhe stephen Colbert to lohn Oliver

John Oliver to a Cartoon Character Barack Obama to Donald Trump MLE to Barack Obama

A. Bansal, S. Ma, D. Ramanan, Y. Sheikh Recycle-GAN:
Unsupervised Video Retargeting. In ECCV, Sept. 2018.
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Playing games

The front cover of Nature, in late January, 2016.

UNIVERSITET
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ImageNet Large Scale |
Visual Recognition Challenge

@ 1000 classes
@ 1.2 million images

@ From 2012 onwards all
won by deep CNNs

eeeeeeeeeeeeeeeeeeeeeeeee

Top 5 error
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Andrej Karpathy blog w

The state of Computer Vision and Al: we are really,
really far away.

UPPSALA
UNIVERSITET

The picture above is funny
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How does a neural network work? | e
i ) N ,; e\
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A linear classifier
and how to train it

AAAAAAA
EEEEEEE
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Problem formulation

Image classification

Switching to Stanford slides. ..

CS231n: Convolutional Neural Networks for Visual Recognition

AAAAAAA
uuuuuuuuu
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http://cs231n.stanford.edu/

Image Classification: a core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

- cat

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 6 6 Jan 2016




The problem:
semantic gap

Images are represented as
3D arrays of numbers, with
integers between [0, 255].

E.g.
300 x 100 x 3

(3 for 3 color channels RGB)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

What the computer sees

Lecture2 - 7




Challenges: Viewpoint Variation

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 8 6 Jan 2016




Challenges: Illumination

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture2- 9 6 Jan 2016




Challenges: Deformation

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 10 6 Jan 2016




Challenges: Occlusion

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 11 6 Jan 2016




Challenges: Background clutter
T L e

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 12 6 Jan 2016




Challenges: Intraclass variation

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 13 6 Jan 2016




An image classifier

def predict (inmage):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 14 6 Jan 2016




Data-driven approach:

1. Collect a dataset of images and labels

2. Use Machine Learning to train an image classifier

3. Evaluate the classifier on a withheld set of test images

Example training set

def train(train_images, train_labels): cat dog mug hat
# build a model for images -> labels... [ [ B TR i N
“% 4 Wi yE

MR M S Wl

return model

def predict(model, test_images): 2 . g B

# predict test_labels using the model... -
return test_labels m L .!& iﬁa é ‘g’
hwn EVAR s2< By

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 16 6 Jan 2016




Data driven approach to image classification

Task: Design a classifier f(x, W) that tells us which class
yi € {1,2,...,N} an image x; belongs to.

Approach:

@ Select a classifier type
— we start with a linear (affine) classifier y = Wx + b

© Select a performance measure
— I'll mention two loss functions

© For your data set, find the parameters W which maximize
performance, that is, minimize the overall loss
— This is the "learning" part
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airplane #!% » ..:.&, Example dataset: CIFAR-10
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 46 6 Jan 2016




Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images.

ﬂII%' » II!E&

airplane

bird

Fei-Fei Li & Andrej Karpathy & Justin Johnson

For every test image (first column),
examples of nearest neighbors in rows

Lecture 2 - 19 6 Jan 2016




Linear Classification

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 41 6 Jan 2016




Parametric approach

image parameters

f(x, W) 10 numbers,

indicating class
scores

[32x32x3]
array of numbers 0...1
(3072 numbers total)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 47 6 Jan 2016




Parametric approach: Linear classifier
fle, W) =Wz

10 numbers,
indicating class
scores

[32x32x3]
array of numbers 0...1

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 48 6 Jan 2016




Parametric approach: Linear classifier

£z, W) =[Wig 072!

10x1 10x3072
\ 10 numbers,
indicating class
scores

[32x32x3]
array of numbers 0...1

parameters, or “weights”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 49 6 Jan 2016




Parametric approach: Linear classifier

fla, W)| =g 30721 |(+b)|10x1

10x1 10x3072
\ 10 numbers,
indicating class
scores

[32x32x3]
array of numbers 0...1

parameters, or “weights”

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 2 - 50 6 Jan 2016




Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

0.2 | 05| 01 | 2.0
7= 15 | 1.3 | 21 | 0.0
O

0 |025| 02 |-03
Input image

Fei-Fei Li & Justin Johnson & Serena Yeung

56
1.1 -96.8 | Catscore
231
4| 32 | = | 4379 | Dog score
24
-1.2 61.95 | Ship score
2

Lecture 2 - 55

April 6, 2017



Data driven approach to image classification

Task: Design a classifier f(x, W) that tells us which class
yi € {1,2,...,N} an image x; belongs to.

Approach:

@ Select a classifier type
— we start with a linear (affine) classifier y = Wx + b

© Select a performance measure
— SVM loss (a.k.a. hinge loss) or SoftMax.
© For your data set, find the parameters W which maximize
performance, that is, minimize the overall loss
— This is the "learning" part

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 51 4.9 25
frog -1 g 20 '31

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3- 7 11 Jan 2016




Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 '31

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Multiclass SVM loss:
Given an example (:):i, yl)
where g; is the image ana
where y; is the (integer) label,
and using the shorthand for the
scores vector: s = f(xz;, W)

the SVM loss has the form:
Li =34, max(0,s; — sy, + 1)|

Lecture 3- 8 11 Jan 2016




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (:Bi, yl)
where g; is the image ana
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xz;, W)

the SVM loss has the form:

cat 3.2 1.3 22 |z SR
car 5.1 4.9 2.5 = max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)
frog -1.7 2.0 -3.1 = max(0, 2.9) + max(0, -3.9)

=29+0
Losses: | 2.9 _%%9

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3- 9 11 Jan 2016




Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 '31

Multiclass SVM loss:

Given an example (:Bi, yl)
where g; is the image ana
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xz;, W)
the SVM loss has the form:
Li = Y, max(0, 55 — sy, + 1)|

=max(0,1.3-49+1)
+max(0,2.0-4.9+ 1)
=max(0, -2.6) + max(0, -1.9)

Losses: 2.9 0

=0+0
=0

Lecture 3 -10 11 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 '31

Multiclass SVM loss:

Given an example (:Bi, yl)
where g; is the image ana
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xz;, W)
the SVM loss has the form:
Li = Y, max(0, 55 — sy, + 1)|

=max(0,2.2-(-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)
=max(0, 5.3) + max(0, 5.6)

Losses: 2.9 0 10.9

Fei-Fei Li & Andrej Karpathy & Justin Johnson

=53+5.6
=10.9

Lecture 3 - 11 11 Jan 2016




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (:Bi, yl)
where g; is the image ana
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xz;, W)

the SVM loss has the form:

L; =5 ., max(0,8; — sy +1
cat 3.2 22 d = oy (0,85 — sy, +1)
and the full training loss is the mean
over all examples in the training data:
car 5.1 2.5 A
L= N i Li

frog -1.7
L=(29+0+10.9)/3
Losses: 2.9 0 10.9 = 51.6 Foried)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 -12 11 Jan 2016




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z,W) =Wz are:
Given an example (:Bi, yl)
where g; is the image ana
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xz;, W)

the SVM loss has the form:

cat 3.2 1 3 22 Li = ¥, max(0,s; — sy, + 1)
Q: what if the sum
car 5.1 4.9 2.5 was instead over all
frog -1.7 2.0 -3.1 classes? |
Losses: 2.9 0 109 | (neludingi=v.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 -13 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 51
frog -1.7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 25 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

s = f(zi; W)
cat 3.2
car 51
frog -1.7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 26 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y = k|X = :L'i) S where s = f(mz, W)

=<
cat 3.2
car 51
frog -1.7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 27 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y=hX=2)=5 | wee [s= f(zyW)

Zj e’
cat 3.2 Softmax function
car 51
frog -1.7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 28 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y = k|X = :L'i) = Ziszsj where s = f(mz, W)

Want to maximize the log likelihood, or (for a loss function)
cat 32 to minimize the negative log likelihood of the correct class:

Li=—log P(Y = 5| X = 2
car 5.1 og P il )

frog -1.7

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 29 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y = k|X = :L'i) = Ziszsj where s = f(mz, W)

Want to maximize the log likelihood, or (for a loss function)
cat 32 to minimize the negative log likelihood of the correct class:

Li=—log P(Y = 5| X = 2
car 5.1 og P il )

frog -1.7 insummary:  L; = — log(

e’Y

i
Zj €’

)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 30 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

Li = — lOg( ef-’»';sj)

2
cat 3.2
car 5.1
frog -1.7

unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 31 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

Li = — lOg( ef-’»';sj)

37
unnormalized probabilities
cat 3.2 24.5
car 51 - |164.0
frog -1.7 0.18

unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 32 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

Li = — lOg( Ze:y;sj )
unnormalized probabilities
cat 3.2 24.5 0.13
exp normalize
car 51 —— 164.0— | 0.87
frog -17 018 000
unnormalized log probabilities probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 33 11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

3.2
5.1
-1.7

L; = —log(

unnormalized probabilities

exp

24.5
164.0
0.18

normalize
>

unnormalized log probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 34

e’y

<)

0.13 | L_i=-log(0.13)
=0.89

0.87

0.00

probabilities

11 Jan 2016




Softmax Classifier (Multinomial Logistic Regression)

Q: What is the min/max

L; = —log( iye] ) |possible loss L_i?
unnormalized probabilities
cat 3.2 24.5 0.13 |- Li=-log(0.13)
exp normalize =0.89
car 51 —— 164.0— | 0.87
frog -17 018 000
unnormalized log probabilities probabilities

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 35 11 Jan 2016




Data driven approach to image classification

Task: Design a classifier f(x, W) that tells us which class
yi € {1,2,...,N} an image x; belongs to.

Approach:

@ Select a classifier type
— we start with a linear (affine) classifier y = Wx + b

© Select a performance measure
— SVM loss (a.k.a. hinge loss) or SoftMax.
© For your data set, find the parameters W which maximize
performance, that is, minimize the overall loss
— This is the "learning" part

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Data driven approach to image classification m

Minimize the loss over the training data

arg mMi/n loss(training data)

AAAAAAA
TTTTTTT
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 -45 11 Jan 2016



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 46 11 Jan 2016



Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

dx h —0 h

(@) . feth) - i@

In multiple dimensions, the gradient is the vector of (partial derivatives).

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 -47 11 Jan 2016




original W

//

negative gradient direction

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 64 11 Jan 2016




Data driven approach to image classification

Minimize the loss over the training data
arg mMi/n loss(training data)
using Gradient Descent to minimize the loss L:

1 Initialize weights W,

2 Compute the gradient w.r.t. W, VL(W,;x) = (2L 2L )

Wy wp? T

3 Take a small step in the direction of the negative gradient
Wi.1 = Wy — stepsize - VL

4 lterate from (2) until convergence

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Demo 1 | o)

Linear classifier
https://cs.stanford.edu/people/karpathy/convnetjs/
demo/classify2d.html

layer_defs = [1;

layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:1, activation:'tanh'});
layer_defs.push({type:'svm', num_classes:2});

net = new convnetjs.Net();
net.makeLayers(layer_defs);

trainer = new convnetjs.SGDTrainer (net, {learning_rate:0.01, momentum:0.1, batch_size:10, 12_decay:0.001});

UPPSALA
UNIVERSITET
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Linear classifiers and their limits

AAAAAAA
EEEEEEE

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

f(x,W) = Wx

;\r’h 02 | 05012

]2 ][] e
mﬁ 15| 13 | 21 | o E + = Dog score
. - n H M Shipeae

:
°
B
1
°
®
S
°

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 57

April 5, 2018



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image
Algebraic Viewpoint “NLA
e 1%
/282
A \-,/
f(x,W) = Wx -
0.2 0.5 1.5 1.3 0 .25
21 0.0 0.2 | -0.3
IIZ 05| 0.1 20
15 | 13 | 21 0.0

°
B
1
°
®
S
°

0.1 2.0
X -su 8 | Catscore
X u 431 9 | Dog score { }
: sn ip score
‘

Score

‘ 437.9 ‘ ’ 61.95 ‘

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 58 April 5, 2018




Interpreting a Linear Classifier

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Fei-Fei Li & Justin Johnson & Serena Yeung

Input image

Lecture 2 - 59

April 5, 2018




Interpreting a Linear Classifier: Visual Viewpoint

airplane . ' )ﬁ.= - - -. Input image

automobile 56

bird (2l

cat )

deer 02 | 05 15 | 13 o | 25
dog W 01 | 20 21 | 00 02 |03
frog

horse b 1.4 32 12
N Score
truck

plane car bird cat deer dog frog horse ship truck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 60 April 5, 2018




Interpreting a Linear Classifier: Geometric Viewpoint

Ny

.,\

.' fXW)
S

car classifier

airplane classifier| G

deer classifier

Plot created using Wolfram Cloud

Array of 32x32x3 numbers
(3072 numbers total)

Catimage by Nikta is icensed under CC-BY 2.0

i-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 61




Hard cases for a linear classifier

Class 1: Class 1:
First and third quadrants 1<=L2norm <=2
Class 2: Class 2:

Second and fourth quadrants Everything else

Class 1:
Three modes

Class 2:
Everything else

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 62

April 5, 2018




Neural networks — stacked
non-linear classifiers

AAAAAAA
EEEEEEE
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 61 13 Jan 2016




Neural Network: without the brain stuff

(Before) Linear score function: f = Wa

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 62 13 Jan 2016




Neural Network: without the brain stuff

(Before) Linear score function: f = Wa

(Now) 2-layer Neural Network f =Wy max(0, Wiz)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 63 13 Jan 2016




Actlvatlon functions

aaaaaa

: sigmoid(x) = 11—

. tanh(x) = &= =

= 2sigmoid(2x) — 1

: RelLU(x) = max (0, x)

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Neural Network: without the brain stuff

(Before) Linear score function: f = Wa

(Now) 2-layer Neural Network f =Wy max(0, Wiz)

3072 100 10

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 64 13 Jan 2016




Neural Network: without the brain stuff

(Before) Linear score function: f = Wa

(Now) 2-layer Neural Network f =Ws maX(Oa W1£E)
or 3-layer Neural Network

f — W3 max(O, W2 maX(O, W1$))

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 66 13 Jan 2016




Demo 2

Simple Neural network classifier

https://cs.stanford.edu/people/karpathy/convnetjs/
demo/classify2d.html

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis
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Deep Convolutional Neural
Network

AAAAAAA
EEEEEEE
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Universal approximators... | -

Go gle Scholar neural networks are universal approximators n
Articles About 23,500 resuils (0.08 ‘

Any time Multilayer feedforward networks are universal approximators

Since 2018 K Homik, M Stinchcombe, H White - Neural networks, 1989 - Elsevier

Since 2017 This paper rigorously establishes that standard multilayer feedforward networks with as few

Since 2014 as one hidden layer using arbitrary squashing functions are capable of approximating any

Borel measurable function from one finite dimensional space to another to any desired ...

Custom range... 3
7y U9 Cited by 15636 Related articles All 12 versions Web of Science: 6171

Sort by relevance Fuz7v eueteme ac nnivareal annravimatare

A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate continuous functions
on compact subsets of R"

UPPSALA
UNIVERSITET
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Going deeper... |

]

a4
d

1.7

| 191.ayers | [ 22Layers ]
6.7 -~

B ----- .57 2.99
- l ' E [

ILSVRC'12 ILSVRC'13 ILSVRC'14 ILSVRC'14 ILSVRC'16 ILSVRC'16
AlexNet & VGGNet GooglLeNet ResNet Ensemble

Deeper networks seem to generalize better. ..

UPPSALA
UNIVERSITET
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What used to be seen as a deep neural network. .. 3

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Fully connected Neural network

Src. http://www.rsipvision.com/exploring-deep-learning/

Exponential growth of the number of weights! &

n UNINERSITET
Can we be smarter*
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What used to be seen as a deep neural network. .. m

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Fully connected Neural network

Src. http://www.rsipvision.com/exploring-deep-learning/

Exponential growth of the number of weights! &
Can we be smarter?  Recycle the weights! <&

UNIVERSITET
Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis




Convolutional neural network

Sharing weights over the image

Contains convolutional layers
@ Only local connections

@ Spatial relationship is
preserved

@ Parameter sharing

@ Widely used in image
analysis
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Sharing weights over the image

Contains convolutional layers
@ Only local connections

@ Spatial relationship is
preserved

@ Parameter sharing

@ Widely used in image
analysis
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2d convolutions

Layer 1 Layer 2

AAAAAAA
TTTTTTT
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2d convolutions

Layer 1 Layer 2
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3d convolutions

Layer 1 Layer 2
y y @ Filter coefficients are

learned from data

@ Can be implemented as
matrix multiplication
(faster)

@ Efficient GPU
implementations are
possible

@ Implemented as tensor
multiplications/additions

@ Hierarchical feature
extraction
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@ Implemented as tensor
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Pooling

Reduce the spatial size of the data — Subsampling

Instead of average (small important parts get lost in the crowd),
pick the maximal (most important) response.

Single depth slice

Jlr1]1]2)4
max pool with 2x2 filters
SREN 7 | 8 and stride 2 6 | 8
3 | 2 3|4
1| 2 it
7 -
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A complete Convolutional Neural Network (CNN, ConvNet) w

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONVlCONVl CONVlCONVl
B N R AR RSN
car

fruck

airplane

ship

horse

UPPSALA
UNIVERSITET
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Lenet

C1: feat C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 L

32x32 S2: f. maps
6@14x14

Full ooaneclion ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Src. Yann LeCun, et al, Gradient-based learning applied to document recognition, 1998

UPPSALA
UNIVERSITET
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Alexnet

2088 \/ 2088 \dense

F——
dense’| |dense|

1000

128 Max L Ll
Max 128 Max pooling 294 048
pooling pooling

Src. Alex Krishevsky et al, ImageNet Classification with Deep Convolutional Neural Networks, 2012

UPPSALA
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Googlenet

Src. Going deeper with convolutions

UPP:
UNIVERSITET
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Shallow vs. Deep Learning

MACHINE LEARNING

ks R Classification
xtraction
e Machine Learni ng
=

CAR v

TRUCK X &

BICYCLE X

DEEP LEARNING

Convolutional Neural Network (CNN)

ned

95%
3%
%

|

CAR

TRUCK x

BICYCLE X

Classic “Shallow” Machine Learning vs. Deep Learning

UPPSALA
UNIVERSITET

Joakim Lindblad joakim@cb.uu.se

Deep Learning for Image Analysis



Optimization

@ Choice of Loss function to minimize

@ Stochastic Gradient Descent and its variants
@ Initialization

@ Hyper parameters

@ Problems of over fitting, local minima, saddle
points, vanishing gradients

@ Regularization

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Stochastic Gradient descent | )

low learning rate

high learning rate

good learning rate

epoch

Learning rate

Src. http://www.phoenix-
int.com/software/benchmark_report/bird.php

UPPSALA
UNIVERSITET
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@ Training, validation, testing:
Classifier and its parameters

Divide the set of all available labeled samples (patterns) into:

training, validation, and test sets.
DESIGN &TUNE

ALL E)ATA
Training set: Represents data faithfully and reflects all the variation.
Contains large number of training samples.
Used to define the classifier.
Validation set: Used to tune the parameters of the classifier.
(Bias —Variance trade-off to prevent over-fitting)
Test set: Used for final evaluation (estimation) of the classifier’s
performance on the samples not used during the training.




Training, validation, testing |

2.0

T
— Train Loss

—— Validation Loss

0.0 . L L L
0 50 100 150 200 250

Remember to keep your test set locked away!
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Summary
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How does a neural network learn?

@ Learns from its mistakes.
@ Contains hundreds of parameters/variables.

@ Find the effect of each parameter when making
mistakes.

@ Increase/decrease the parameter values as to
make less mistakes.

@ Do all the above several times.

AAAAAAA
uuuuuuu

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



How does a neural network learn?

@ Learns from its mistakes. Loss function
@ Contains hundreds of parameters/variables.

@ Find the effect of each parameter when making
mistakes.

@ Increase/decrease the parameter values as to
make less mistakes.

@ Do all the above several times.

AAAAAAA
uuuuuuu

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



How does a neural network learn?

@ Learns from its mistakes. Loss function
@ Contains hundreds of parameters/variables.

@ Find the effect of each parameter when making
mistakes. Back propagation

@ Increase/decrease the parameter values as to
make less mistakes.

@ Do all the above several times.

AAAAAAA
uuuuuuu

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



How does a neural network learn?

@ Learns from its mistakes. Loss function
@ Contains hundreds of parameters/variables.

@ Find the effect of each parameter when making
mistakes. Back propagation

@ Increase/decrease the parameter values so as
to make less mistakes. Stochastic Gradient
Descent
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How does a neural network learn?

@ Learns from its mistakes. Loss function
@ Contains hundreds of parameters/variables.

@ Find the effect of each parameter when making
mistakes. Back propagation

@ Increase/decrease the parameter values so as
to make less mistakes. Stochastic Gradient
Descent

@ Do all the above several times. lierations
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Demo

http://cs.stanford.edu/people/karpathy/convnetjs/

UPPSALA
UNIVERSITET
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http://cs.stanford.edu/people/karpathy/convnetjs/

Recap

What we have learnt so far

@ Alinear classifier y = Wx encoding a "one hot" vector

@ Two loss functions (performance measures) L(x; W),
hinge loss (SVM loss) and multiclass cross-entropy

e¥i

R loss: L = — log(softmax)
J

@ Touched upon Gradient descent for minimizing the loss

— softmax =

@ Send the output through a nonlinearity (activation
function) y = f(Wx), e.g. ReLU.

@ Send the output to another classifier, and another...
y = f(Wsf(Waf (W;x))) = Neural network

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Recap

What we have learnt so far

@ Training the network = find the weights W which minimize
the loss L(W; X)
arg mmi/n L(W; X)

@ Gradient descent to minimize the loss L:

1 Initialize weights W,

2 Compute the gradient w.r.t. W,
VL(Wg; X) = (8%1, aa—vﬁz, o)

3 Take a small step in the direction of the negative
gradient Wy, = W) — stepsize - VL

4 lterate from (2) until convergence

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Recap

What we have learnt so far

@ How to compute the derivatives VL(W: X) = (2, 2L )

TW1’ 8W2’ PN
@ Use a computational graph (impractical to write out the
looong equation)
@ Back propagation - "Backprop"

@ Using the chain rule, derivatives are propagating

oL _ 9L Ooutput
backwards up through the net - 5o = Foutpul Dinput

» forward: compute result of an operation and save
any intermediates needed for gradient computation
in memory

» backward: apply the chain rule to compute the

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Bonus material

AAAAAAA
TTTTTTT
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How to compute derivatives — Backpropagation

@ Gradient descent to minimize the loss L:

1 Initialize weights W,

2 Compute the gradient w.r.t. W, VL(Wi;X) = (45 mess - )

3 Take a small step in the direction of the negative gradient
Wi.1 = Wy — stepsize - VL

4 lterate from (2) until convergence

@ Backprop: Using the chain rule, derivatives are propagating

oL _ 9L  Ooutput
backwards up through the net Binput = Joutput Jinput

» forward: compute result of an operation and save any
intermediates needed for gradient computation in memory

» backward: apply the chain rule to compute the gradient of
the loss function with respect to the inputs

Joakim Lindblad joakim@cb.uu.se Deep Learning for Image Analysis



Optimization

while True:
weights grad = evaluate gradient(loss_fun, data, weights)
Landscape image 0 public domain weights += - step_size * weights_grad # perfc arameter updat

Walking man 0.1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -6 April 13, 2017




Gradient descent

@) . Stk - i@

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -7 April 13, 2017




Neural Network: without the brain stuff

(Before) Linear score function: f = Wa

(Now) 2-layer Neural Network f =Ws maX(Oa W1£E)
or 3-layer Neural Network

f — W3 max(O, W2 maX(O, W1$))

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 66 13 Jan 2016




Convolutional network
(AlexNet)

input image

weights L

loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -9 April 13, 2017




Neural Turing Machine /

input image

loss

\

\

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 10 April 13, 2017




Neural Turina Misrhine————— -
eural ruring iviacnine = I

Tuilier post by Andre] Karpathy.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - April 13, 2017




Computational graphs

f = Waxl ILi = Z#yi max (0, s; — sy, + 1)

@ s (scores) ‘ ?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -8 April 13, 2017




Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 12 April 13, 2017




Backpropagation: a simple example | x 2

q 3
f(z,9,2) = (@ + )= .
eg.x=-2,y=5z=-4 -
zZ -4
of of

f=az g =wnp =4

. 9F 5 9
Want: B Ty e
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_ 0qg ., dq
q—$+y —a—l,a—l
of of
. df 8f 49f
Want: 2 9’ B2
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Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

dq dq
g=x+y —=1==1
oz dy o
af af of
f=az g =wnp =4
. 9F 5 9
Want: B Ty e
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Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

_ 0g . 9q
_ of _ _ 8f _ Chain rule: oy
f=gqz g 2oz 4 g_ifaq
Want: &L 2 of % 8 &
ant: Bz By” Oe
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Backpropagation: a simple example
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“local gradient”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 25 April 13, 2017




“local gradient”

oL
0z

gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 26 April 13, 2017




“local gradient”

oL
0z

gradients
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“local gradient”

oL
0z

gradients
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“local gradient”

oL
0z

gradients

ei Li & Justin Johnson & Serena Yeung Lecture 4 - 29 April 13, 2017



Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 50

-10.00 @ -20.00

N T

April 13, 2017




Gradients for vectorized code (x,y,zare This is now the
now vectors)  Jacobian matrix
(derivative of each
element of z w.r.t. each
element of x)

“local gradient”

o &
> c?
AL
0z
gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 52 April 13, 2017



Modularized implementation: forward / backward API

class MultiplyGate(object):

def forward(x,y):

<
z = x*y
Z
return z
def backward(dz):
#dx = ... #tod‘D\aL

y # dy = ... #todo a—
return X Z
(x,y,z are scalars) L “’;{
oL
Oz

April 13, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 76




Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):

\ ey

4 self.x = x # must keep these around!
self.y =y
return z

y def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
(x,y,z are scalars) d
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dyl

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 - 77 April 13, 2017




Yes you should understand backprop!

https://medium.com/@karpathy/
yes-you-should-understand-backprop-e2f06eab496b
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Filter visualization

First and second layer features of Alexnet

Src. http://cs231n.github.io/understanding-cnn/

UPPSALA
UNIVERSITET
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Filter visualization

Src. Matthew D. Zeiler, et al, Visualizing and Understanding Convolutional Networks, ECCV 2014

UPPSALA
UNIVERSITET
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Filter visualization

Src. Matthew D. Zeiler, et al, Visualizing and Understanding Convolutional Networks, ECCV 2014 @
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DeepDream

DeepDream is a program created by Google engineer Alexander
Mordvintsev

Finds and enhances patterns in images via algorithmic pareidolia, thus
creating a dream-like hallucinogenic appearance in the deliberately
over-processed images.

The optimization resembles Backpropagation, however instead of adjusting
the network weights, the weights are held fixed and the input is adjusted.

Pouff - Grocery Trip
https://www.youtube.com/watch?v=DgPaCWJL7XI

ALA
UNIVERSITET
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Further reads/links

Get going in MATLAB
https://se.mathworks.com/help/nnet/examples/create-simple-deep-learning-network-for-classification.html

Machine learning by Andrew Ng (Coursera)
https://www.youtube.com/playlist?1ist=PLZ9gNFMHZ-Ad4rycgrg0Yma6zxF4BZGGPW

Stanford CS231n deep learning course by Fei Fei’s group, 2016 version (skip to 2nd lecture, w. Andrej Karpathy)
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PL1Jy-eBtNFt6EuMxFYRiNRSO7MCWN5UIA&index=1
2017 version https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM81jYj-2zLfQRF3E08sYv

Recent deep learning summer school in Toronto http://videolectures.net/DLRLsummerschool12018_toronto/
lan Goodfellows book on deep learning http://www.deeplearningbook.org/

Stat212b: Topics Course on Deep Learning http://joanbruna.github.io/stat212b/

fast.ai Making neural nets uncool again http://www.fast.ai/

Yann LeCun’s “Gradient-based learning applied to document recognition”
http://ieeexplore.ieee.org/document/726791/?arnumber=726791

An overview of gradient descent optimization algorithms http://ruder.io/optimizing-gradient-descent/
WILDML http://www.wildml.com/

Deep Learning Glossary http://www.wildml.com/deep-learning-glossary/

colah’s blog http://colah.github.io/

https://icml.cc/Conferences/2017/Tutorials , https://icml.cc/2016/index.html
https://arxiv.org

http://www.aiindex.org/2017-report.pdf

And many many more ...

UNIVERSITET
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https://se.mathworks.com/help/nnet/examples/create-simple-deep-learning-network-for-classification.html
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https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA&index=1
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
http://videolectures.net/DLRLsummerschool2018_toronto/
http://www.deeplearningbook.org/
http://joanbruna.github.io/stat212b/
http://www.fast.ai/
http://ieeexplore.ieee.org/document/726791/?arnumber=726791
http://ruder.io/optimizing-gradient-descent/
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