
Lecture 8
Object Descriptors

Azadeh Fakhrzadeh Azadeh Fakhrzadeh Azadeh Fakhrzadeh Azadeh Fakhrzadeh 
Centre for Image Analysis
Swedish University of Agricultural Sciences
Uppsala University



2

Reading instructions

Chapter 11.1 – 11.4  in G-W
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Image analysis

• Our progress in the analysis process
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So far

Today 

and next 

lecture



6

Representations and descriptors

Next step after segmentation is  to represent the 
object in a  good way that makes it  Possible to 
describe it. 

• Two ways to represent regions:
• BoundaryBoundaryBoundaryBoundary (external characteristics)

• Shape, orientation 
• WholeWholeWholeWhole regionregionregionregion (internal characteristics)

• Color, texture, histogram 
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Scale, rotation and translation
• Most of the time  we are interested to choose descriptors 

that are invariant of variations of scale, rotation and 
translation whenever possible

But not always in Optical character recognition (OCR) Rotation 

and scale is important like P and d
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Chain Coding 

• Walk around the object 
boundary and describe 
directional change in each 
step by a number

Boundary representation
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• Code  become very long and noise sensitive

• Use larger grid spacing, 0710 = 00

• Scale dependent

• Choose appropriate grid spacing

• Start point determines result

• Treat code as circular (minimum magnitude integer)
754310     075431

• Depends on rotation

• Calculate difference code (counterclockwise) 
075431    767767

Chain Coding
Considerations 
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Polygonal Approximations

• A digital boundary can be approximated 
(simplified)

• For closed boundaries:

• Approximation becomes exact when no. of 
segments of the polygons is equal to the no. of 
points in the boundary

• Goal is to capture the essence of the object 
shape

• Approximation can become a time consuming 
iterative process

Boundary representation
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Polygonal Approximations

• Minimum Perimeter PolygonsMinimum Perimeter PolygonsMinimum Perimeter PolygonsMinimum Perimeter Polygons (MPPs)
• Cover the boundary with cells of a chosen size and 

force a rubber band like structure to fit inside the cells
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Polygonal Approximations

• Merging techniquesMerging techniquesMerging techniquesMerging techniques
1. Walk around the boundary and fit a least-square-error line to 

the points until an error threshold is exceeded
2. Start a new line, go to 1
3. When start point is reached the intersections of adjacent lines 

are the vertices of the polygon
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Polygonal Approximations

• Splitting techniquesSplitting techniquesSplitting techniquesSplitting techniques
1. Start with an initial guess, e.g., based on majority axes
2. Calculate the orthogonal distance from lines to all points
3. If maximum distance > threshold, create new vertex there
4. Repeat until no points exceed criterion
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Signatures
Boundary representation



15

Signatures

• A 1D representation of a boundary
• Could be implemented in different ways

• Distance from centre point to border as a function of angle
• Angle between the tangent in each point and a reference line 

(slope density function)
• Independent of translation, but not rotation & scaling. 

Possible solutions:
• Select unique starting point (e.g. based on major axis)
• Normalize amplitude of signature (divide by variance)

Boundary representation
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Boundary segments

• When a boundary contains major concavities that carry 
shape information it can be worthwhile to decompose it 
into segments

• A good way to achieve this is to calculate the convex convex convex convex 
HullHullHullHull of the region enclosed by the  boundary

• Can be a bit noise sensitive
• Smooth prior to Convex hull calculation
• Calculate Convex Hull on polygon approximation

Boundary representation



17

Boundary segments

• Can be a bit noise sensitive
• Smooth prior to Convex Hull calculation 
• Calculate Convex Hull on polygonal approximation
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Skeletons

• Skeletons could be used as curve representations of an 
object

• Should in general be thin, centered, topologically 
equivalent to original object and reversible 

Shape representation
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Skeletons

• Example:
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Descriptors

• We have now represented our objects in different 
ways (using boundary representation and 
skeletons)

• The next step is to describe our regions so that 
we later can classify them (next lecture)
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Simple boundary descriptors

• Length (perimeter)
• Diameter = = major axis
• Minor axis (perpendicular to major axis)
• Basic rectangle = major × minor
• Eccentricity = major / minor
• Curvature= rate of change of slope

Boundary descriptors
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Fourier descriptors

• Redefine the x- & y-coordinates of the boundary as the 
real and imaginary parts respectively of a complex number

• Fourier transform of the new coordinates generates the 
Fourier descriptors

• Inverse transformation will regenerate the original image
• Doing an inverse transform on a part of the descriptors will 

result in an approximation of the shape

Boundary descriptors
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Fourier descriptors

• Represent the boundary 
as a sequence of 
coordinates

• Treat each coordinate pair 
as a complex number 
(2D  1D )
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Fourier descriptors

• From the DFT of the complex number we get the Fourier 
descriptors (the complex coefficients, a(u))

• The IDFT from these coefficients restores s(k)

• We can create an approximate reconstruction of s(k) if 
we use only the first P Fourier coefficients
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Fourier descriptors

• Boundary reconstruction using 546, 110, 56, 28, 14 and 8 Fourier
descriptors out of a possible 1090. 
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Fourier descriptors

• This boundary consists of 64 point, P is the number of 
descriptors used in the reconstruction
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Statistical moments

• Useful for describing the shape of boundary segments 
(or other curves)

• Suitable for describing the shape of convex deficiencies
• The histogram of the function (segment curve) can also 

be used for calculating moments
• 2nd moment gives spread around mean (variance)
• 3rd moment gives symmetry around mean (skewness)

Boundary descriptors
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Statistical Moments

• If v is a discrete random variable representing discrete 
amplitude in the range [0,A-1] then the nth statistical 
moment of v (about its mean) is calculated as:
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Simple Regional Descriptors

• Area = number of pixels in a region
• Compactness (P2A) = perimeter^2 / area
• Circularity ratio = 4×π×area / perimeter^2
• Graylevel measures

• Mean
• Median
• Max
• Etc.

Regional descriptors
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• Topology = The study of the properties of 
a figure that are unaffected by any 
deformation

• Topological descriptors

• Number of holes in a region, H

• Number of connected components, C

• Euler number, E = C – H

A    B

Topological descriptors
Regional descriptors
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Topological descriptors

• Using connected components

Regional descriptors

IR image Thresholded 
image

SkeletonLargest 
connected 
component
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Texture

• Textures can be very valuable when describing 
objects

• Example below: Smooth, coarse and regular 
textures

Regional descriptors
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Texture

• Statistical texture descriptors: 

• Histogram based

• Co-occurence based
(Statstical moments, Uniformity, entropy,... )

• Spectral texture descriptor

• Use fourier transform 
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Histogram based descriptors

• Properties of the graylevel histogram, of an image or 
region, used when calculating statistical moments
• z : discrete random variable representing discrete graylevels in 

the range [0 , L-1]
• P(zi) : normalized histogram component corresponding to the ith 

value of z

Regional descriptors

2nd moment : Variance of z
3rd moment : Skewness
4th moment : Relative flatness
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Histogram based descriptors

Uniformity and average entropy also uses z & P(zi)

• Uniformity (maximum for image with just one grayvalue):

• Average entropy (measure of variability. Is 0 for constant 
images)
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Co-occurrence matrix

• For an image with N graylevels, and P, a positional 
operator, generate AAAA, a N × N matrix, where ai,j is the 
number of times a pixel with graylevel value zi is in 
relative position P to graylevel value zj

• Divide all elements in AAAA with the sum of all elements in 
A.A.A.A. This gives a new matrix CCCC where ci,j is the probability 
that a pair of pixels fulfilling P has graylevel values zi and 
zj which is called the cocococo----occurrence matrixoccurrence matrixoccurrence matrixoccurrence matrix

Regional descriptors
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Co-occurrence Matrix
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Co-occurrence Matrix Descriptors

• Maximum probability (strongest response 
to P)

• Uniformity

• Entropy (randomness)
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Co-occurrence Matrix

• Example 1
• Maximum probability = 1/3
• Uniformity ≈ 0.264
• Entropy ≈ undefined



40

Co-occurrence Matrix

• Example 2

• Maximum probability = 1/3

• Uniformity ≈ 0.167

• Entropy ≈ 2.918
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Co-occurrence Matrix

• Examples: match image to co-occurrence 
matrix
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Spectral Texture

• Peaks in the Fourier spectrum give information 
about direction and spatial period patterns

• The spectrum can be described using polar 
coordinates S(r,θ)

• For each angle θ, S(r,θ) is a 1D function S
θ
(r)

• Similarly, for each frequency r, Sr(θ) is a 1D 
function

• A global description can be obtained by summing 
S
θ
(r) and Sr(θ)

Regional descriptors
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Spectral Analysis
Regional descriptors
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Spectral Analysis

S(θ)S(r)
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Moment Invariants

• For a 2D continuous function f(x,y), the moment of order 
(p + q) is defined as 

for p, q = 0,1,2,…

• The central moments are defined as

where 

Regional descriptors
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Moment Invariants

• If f(x,y) is a digital image, the central moments become

• The normalized central moments, denoted ηpq, are 
defined as

where for p+q = 2,3,…
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Moment Invariants

• A set of seven invariant moments can be derived from 
the 2nd and 3rd moments

• These moments are invariant to changes in translation, 
rotation and scale 
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Principal components Analysis
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Matlab code 

m = [0 0];

Sigma = [3 2;2 2]; R = chol(Sigma);

z = repmat(m,1000,1) + randn(1000,2)*R;

c=cov(z);

figure,scatter(z(:,1),z(:,2),'.');

c=cov(z);

[E,D]=eig(c)

figure,scatter(z(:,1),z(:,2),'.');

hold on

quiver(0,0,E(1,1),E(2,1),'r','LineWidth',4);

axis('equal');

hold on

quiver(0,0,E(1,2),E(2,2),'r','LineWidth',4);

axis('equal');

[E,D]=eig(c)

[pc score latent]=princomp(z);

figure,scatter(score(:,1),score(:,2),'.');

axis('equal');
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Principal components Analysis

• Calculate Cx, covariance matrix of data X

• Find eigenvectors and corresponding eigen values  of covariance 
matrix   (Cxeeeeiiii = λieeeei)

• Find AAAA which is a matrix with the eigenvectors as rows, ordered 
corresponding to decreasing eigenvalue

• Use AAAA to transform xxxx to yyyy: yyyy = AAAA(xxxx – mmmmx). 
• Any vector x x x x can be recovered from y y y y by: x x x x = AAAATyyyy + mmmmx and 

approximated by only using some (say k) of the eigenvalues and an AAAAk
matrix constructed from the k eigenvectors
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Face recognition Using PCA

We need a training data set
We need a training data set: bunch of 

sample images of  people 

we want to recognize  

Using PCA analysis we find eigenfaces

(eigenvectors)

Every new image that we have,  we 

project the Image on eigenvectors 

and based on the weights  we obtained 

we can classify it.

=   w1        + w2          + w3

http://www.mathworks.co.uk/matlabcentral/fileexchange/

17032-pca-based-face-recognition-system
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Conclusion

• Boundary representation (chain code,  polygonal, 
signature, convex hull)

• Shape represent (skeleton)

• Boundary descriptor (Fourier descriptor , statistical 
descriptor)

• Regional descriptor (Histogram, Texture )

• PCA

Exercise 11.19 and 11.25


