Summary of last week's lecture

- Virtually all filtering is a local neighbourhood operation
- Convolution = linear and shift-invariant filters
- e.g. mean filter, Gaussian weighted filter
- kernel can sometimes be decomposed
- Many non-linear filters exist also
- e.g. median filter, bilateral filter
- The Fourier transform decomposes a function (image) into trigonometric basis functions (sines \& cosines).
- The Fourier transform is used to analyse frequency components of an image.

Linear neighbourhood operation

- For each pixel, multiply the values in its neighbourhood with the corresponding weights, then sum.

Convolution properties

- Linear:
- Scaling invariant:
$(C f) \otimes h=C(f \otimes h)$
- Distributive:
$(f+g) \otimes h=f \otimes h+g \otimes h$
- Time Invariant:
(= shift invariant)
- Commutative:
$\operatorname{shift}(f) \otimes h=\operatorname{shift}(f \otimes h)$
$f \otimes h=h \otimes f$
- Associative:
$f \otimes\left(h_{1} \otimes h_{2}\right)=\left(f \otimes h_{1}\right) \otimes h_{2}$

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Fourier transform

$$
F\left(-\omega_{1}\right)=F^{*}\left(\omega_{1}\right)
$$

Fourier transform pairs

Gaussian
 $\dagger \longrightarrow$ Gaussian

Properties of the Fourier transform

Spatial scaling

Amplitude scaling

Addition

Translation

Convolution

$$
\mathscr{F}\{\boldsymbol{f} \otimes h\}=\mathscr{F}\{\boldsymbol{f}\} \cdot \mathscr{F}\{\boldsymbol{h}\}
$$

$$
\mathscr{F}\{\boldsymbol{f}\} \cdot \mathscr{F}\{\boldsymbol{h}\}=\mathscr{F}\{\boldsymbol{f} \otimes h\}
$$

Today's lecture

- The Discrete Fourier transform (DFT)
- The Fourier transform in 2D
- The Fast Fourier Transform (FFT) algorithm
- Designing filters in the Fourier domain
- filtering out structured noise
- Sampling, aliasing, interpolation

Sampling

spatial domain
continuous function

frequency domain

sampling function
sampled function

Discrete Fourier transform

spatial domain

sampled function
continuous image
discrete image
frequency domain

\square

Discrete Fourier transform

Continuous FT: $\quad F(\omega)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-i \omega x} \mathrm{~d} x$
Discrete FT: $F[K]=\sum_{n=0}^{N-1} f[n] \mathrm{e}^{-i \frac{2 \pi}{N} k n}$
k is the spatial frequency, $k \in[0, N-1]$
$\omega=2 \pi k / N$
$\omega \in[0,2 \pi[$

Discrete Fourier transform

$$
\begin{aligned}
& F[[]]=\sum_{m=0}^{N=1} f[n] e^{-\frac{2 \pi}{0} m}
\end{aligned}
$$

Main difference with $F(\omega)$ is that $F[k]$ is defined on a limited domain (N samples), and that these samples are assumed to repeat periodically: $F[k]=F[k+N]$.

In the same way, $f[n]$ is defined by N samples, which are assumed to repeat periodically: $f[n]=f[n+N]$.

Discrete Fourier transform

- The DFT only has positive frequencies !?!?!?
- Remember: it is periodic! $F[k]=F[k+N]$
- Thus: $F[-k]=F[N-k]$

Fourier transform in 2D, 3D, etc.

- Simplest thing there is! - the FT is separable:
- Perform transform along x-axis,
- Perform transform along y-axis of result,
- Perform transform along z-axis of result, (etc.)

$F[u, v]=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[n, m] \mathrm{e}^{-i 2 \pi\left(\frac{u n}{N}+\frac{v m}{M}\right)}=\sum_{m=0}^{M-1}\left(\sum_{n=0}^{N-1} f[n, m] \mathrm{e}^{-i \frac{2 \pi}{N} u n}\right) \mathrm{e}^{-i \frac{2 \pi}{M} v m}$

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D Fourier transform pairs

box

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D Fourier transform pairs

pillbox

Gauss

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D transform example 1

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D transform example 1

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D transform example 2

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D transform example 2

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D transform example 3

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se 2D transform example 3

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D transform example 4

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se 2D transform example 4

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

2D transform example 5

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se 2D transform example 5

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

What is more important?

magnitude

phase

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

What is more important?

The Fast Fourier Transform (FFT)

- Clever algorithm to compute the DFT.
- Runs in $\mathrm{O}(N \log N)$ time, rather than $\mathrm{O}\left(N^{2}\right)$ time.
- Because of symmetry of the forward and inverse Fourier transforms, FFT can also compute the IDFT.

$$
\begin{gathered}
F[k]=F_{\text {even }}[k]+F_{\text {odd }}[k] \mathrm{e}^{-i \frac{2 \pi}{N} k} \quad N=2 M \\
F[k+M]=F_{\text {even }}[k]-F_{\text {odd }}[k] \mathrm{e}^{-i \frac{2 \pi}{N} k} \\
N=2^{n}
\end{gathered}
$$

Convolution in the Fourier domain

- The Convolution property of the Fourier transform:

$$
\mathscr{F}\{f \otimes h\}=\mathscr{F}\{f\} \cdot \mathscr{F}\{h\}
$$

- Thus we can calculate the convolution through:
- $F=$ FFT(f)
- $H=\operatorname{FFT}(h)$
- $G=F \cdot H$
- $g=\operatorname{IFFT}(G)$
- Convolution is an operation of $\mathrm{O}(N M)$
- N image pixels, M kernel pixels
- Through the FFT it is an operation of $\mathrm{O}(N \log N)$
- Efficient if M is large!

Low-pass filtering

- Linear smoothing filters are all low-pass filters.
- Mean filter (uniform weights)
- Gauss filter (Gaussian weights)
- Low-pass means low frequencies are not altered, high frequencies are attenuated

High-pass filtering

- The opposite of low-pass filtering: low frequencies are attenuated, high frequencies are not altered
- The "unsharp mask" filter is a high-pass filter
- The Laplace filter is a high-pass filter

Band-pass filtering

- You can choose any part of the frequency axis to preserve (band-pass filter).
- Or you can attenuate a specific set of frequencies (band-stop filter).

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: low-pass filtering

input image f

Fourier transform F

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: frequency domain filtering

Fourier filter H

$G=F H$

filtered image g

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Why the ringing?

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

What is the solution?

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: frequency domain filtering

Fourier filter H

$G=F H$

filtered image g

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Structured noise

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Structured noise

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Filtering structured noise

Notch filter

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Filtering structured noise

Notch filter, Gaussian

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Fourier analysis of sampling

$$
F(\omega)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-i \omega x} \mathrm{~d} x
$$

band limit
(cutoff frequency)
$F(\omega)=0, \omega>\omega_{c}$

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Fourier analysis of sampling

spatial domain
frequency domain

sampling function

sampled function

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Fourier analysis of interpolation

spatial domain
sampled function

Aliasing

spatial domain

continuous function

frequency domain

sampling function

sampled function

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Aliasing

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se
Aliasing

Avoid aliasing

frequency domain

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: aliasing

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: aliasing

Example: aliasing

When we downsample, we only keep this part!

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: aliasing

The spectrum is replicated, higher frequencies being duplicated as lower frequencies.

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: Moire

Cris Luengo - 1TD396 - spring 2013 - cris@cb.uu.se

Example: Moire

Summary of today's lecture

- The Fourier transform
- decomposes a function (image) into trigonometric basis functions (sines \& cosines)
- is used to analyse frequency components
- is computed independently for each dimension
- The DFT can be computed efficiently through the FFT algorithm
- Convolution can be studied through the FT
- and filters can be designed in the Fourier domain
- $\mathscr{F}\{f \otimes h\}=\mathscr{F}\{f\} \cdot \mathscr{F}\{h\}$
- Aliasing can be understood through the FT

Reading assignment

- The Fourier transform and the DFT
- Sections 4.2, 4.4, 4.5, 4.6, 4.11.1
- Filtering in the Fourier domain
- Sections 4.7, 4.8, 4.9, 4.10, 5.4
- Sampling and aliasing
- Sections 4.3, 4.5.4
- The FFT
- Section 4.11.3
- Exercises:
- 4.14, 4.21, 4.22, 4.42, 4.43
- 4.27, 4.29
(feel free to solve these in MATLAB)

