

Reading instructions

Chapter 11.1 - 11.4 in G-W

The Image Analysis Chain

· Our progress in the analysis chain

The Next Steps

Representations and descriptors

The next step after segmentation is to **represent** objects to make it possible to **describe** them

- External (boundary):
 - · Representation: Polygon of the boundary
 - Description: The circumference
- · Internal (regional)
 - · Representation: Pixels inside the object
 - · Description: The average color

Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Representations and descriptors

- · The Representation of the Object
 - · An encoding of the object
 - · Truthful but possibly approximate
- · A Descriptor of the Object:
 - · Only an aspect of the object
 - · Suitable for classification
 - · Invariant to e.g. noise, translation, ...
- (We can compute descriptors from the representation, but not vice versa)

Scale, rotation and translation

 Often we want descriptors that are invariant of scale, rotation and translation:

 However, not always. In Optical Character Recognition (OCR) rotation and scale is important (e.g. 'P' and 'd')

Chain Coding

- · Code become very long and noise sensitive
 - Use larger grid spacing, 0710 = 00
- · Scale dependent
 - · Choose appropriate grid spacing
- · Start point determines result
 - * Treat code as circular (minimum magnitude integer) 754310 \rightarrow 075431
- Depends on rotation
 - Calculate difference code (counterclockwise) 075431→767767

Chain Coding

 Walk around the object boundary and describe directional change in each step by a number

Centre for Image Analysis
Swedish University of Agricultural Sciences

Polygonal Approximations

- A digital boundary can be approximated (simplified)
- · For closed boundaries:
 - Approximation becomes exact when no. of segments of the polygons is equal to the no. of points in the boundary
- Goal is to capture the essence of the object shape
- Approximation can become a time consuming iterative process

Polygonal Approximations

- Minimum Perimeter Polygons (MPPs)
 - Cover the boundary with cells of a chosen size and force a rubber band like structure to fit inside the cells

Polygonal Approximations

Merging techniques

- Walk around the boundary and fit a least-square-error line to the points until an error threshold is exceeded
- 2. Start a new line, go to 1
- When start point is reached the intersections of adjacent lines are the vertices of the polygon

Polygonal Approximations

· Splitting techniques

- 1. Start with an initial guess, e.g., based on majority axes
- 2. Calculate the orthogonal distance from lines to all points
- 3. If maximum distance > threshold, create new vertex there
- Repeat until no points exceed criterion

Signatures

Signatures

- A 1D representation of a boundary
- · Could be implemented in different ways
 - Distance from centre point to border as a function of angle
 - · Angle between the tangent in each point and a reference line (slope density function)
- · Independent of translation, but not rotation & scaling. Possible solutions:
 - Select unique starting point (e.g. based on major axis)
 - Normalize amplitude of signature (divide by variance)

Boundary segments

- · When a boundary contains major concavities that carry shape information it can be worthwhile to decompose it into segments
- · A good way to achieve this is to calculate the convex Hull of the region enclosed by the boundary
- · Can be a bit noise sensitive
 - · Smooth prior to Convex hull calculation
 - Calculate Convex Hull on polygon approximation

Boundary segments

- · Can be a bit noise sensitive
 - · Smooth prior to Convex Hull calculation
 - · Calculate Convex Hull on polygonal approximation

Skeletons

- · Skeletons could be used as curve representations of an
- Should in general be thin, centered, topologically equivalent to original object and reversible

Skeletons

· Example:

Descriptors

- After representation, the next step is to describe our regions so that we later can classify them (next lecture)
- A description is an aspect of the representation
- · What descriptor is useful for classification of
 - · adults / children
 - · pears / bananas / tomatoes

Simple boundary descriptors

- · Length (perimeter)
- Diameter = $\max_{i,j} [D(p_i, p_j)]$ = major axis
- · Minor axis (perpendicular to major axis)
- Basic rectangle = major × minor
- Eccentricity = major / minor
- · Curvature= rate of change of slope

Fourier descriptors

- Redefine the x- & y-coordinates of the boundary as the real and imaginary parts respectively of a complex number
 - f(k) = x(k) + i y(k), k = 0 ... (K-1)
- · The DFT generates the K Fourier descriptors
- Inverse transformation of the K descriptors regenerate the original boundary
- Inverse transformation of the P<K first descriptors generates an approximation of the boundary

Fourier descriptors

- Represent the boundary as a sequence of coordinates
- Treat each coordinate pair as a complex number

$$s(k) = [x(k), y(k)], k = 0, 1, 2, \dots, K - 1$$

$$s(k) = x(k) + iy(k)$$

, SLU

Fourier descriptors

 From the DFT of the complex number we get the Fourier descriptors (the complex coefficients, a(u))

$$a(u) = \sum_{k=1}^{K-1} s(k)e^{-j2\pi uk/K}, u = 0, 1, 2, \dots, K-1$$

• The IDFT from these coefficients restores s(k)

$$s(k) = \frac{1}{K} \sum_{k=1}^{K-1} a(u)e^{j2\pi uk/K}, k = 0, 1, 2, \dots, K-1$$

 We can create an approximate reconstruction of s(k) if we use only the first P Fourier coefficients

$$\hat{s}(k) = \frac{1}{P} \sum_{k=0}^{P-1} a(u)e^{j2\pi uk/K}, k = 0, 1, 2, \dots, K-1$$

Fourier descriptors

 This boundary consists of 64 point, P is the number of descriptors used in the reconstruction

Statistical moments

- · Useful for describing the shape of boundary segments
- Suitable for describing the shape of convex deficiencies
- The histogram of the function (segment curve) can also be used for calculating moments
 - 2nd moment gives spread around mean (variance)
 - 3rd moment gives symmetry around mean (skewness)

Statistical moments

 If v is a discrete random variable representing discrete amplitude in the range [0,A-1] then the nth statistical moment of v (about its mean) is calculated as:

$$\mu(v) = \sum_{i=0}^{A-1} (v_i - m)^n p(v_i), m = \sum_{i=0}^{A-1} v_i p(v_i)$$

Simple Regional Descriptors

- Area = number of pixels in a region
- Compactness (P2A) = perimeter^2 / area
- Circularity ratio = 4×π×area / perimeter^2
- Graylevel measures
 - Mean
 - Median
 - Max
 - Etc.

 Topology = The study of the properties of a figure that are unaffected by any deformation

Topological descriptors

- Topological descriptors
 - · Number of holes in a region, H
 - · Number of connected components, C
 - Euler number, E = C H

- Statistical texture descriptors:
 - · Histogram based
 - · Co-occurence based (Statstical moments, Uniformity, entropy,...)
- Spectral texture descriptor
 - · Use fourier transform

Histogram based descriptors

- Properties of the graylevel histogram, of an image or region, used when calculating statistical moments
 - · z : discrete random variable representing discrete graylevels in the range [0, L-1]
 - P(z_i): normalized histogram component, i.e. the probability of finding a gray value corresponding to the i:th gray level z,

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i), \quad m = \sum_{i=0}^{L-1} z_i p(z_i)$$

3rd moment : Skewness 4th moment : Relative flatness

Histogram based descriptors

Uniformity and average entropy is computed similarly:

· Uniformity (maximum for image with just one grayvalue):

$$U = \sum_{i=0}^{L-1} p^2(z_i)$$

· Average entropy (measure of variability. Defined as 0 for constant images)

$$e = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

Co-occurrence matrix

- For an image with N graylevels, and P, a positional operator, generate A, a N × N matrix, where a_{i,i} is the number of times a pixel with graylevel value zi is in relative position P to graylevel value z_i
- This gives a new matrix **C** where c_i is the probability that a pair of pixels fulfilling P has graylevel values z, and z, which is called the co-occurrence matrix

Divide all elements in A with the sum of all elements in A.

Co-occurrence matrix

P = "one pixel down"

 $\mathbf{A}_1 = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ 3 & 0 & 4 \\ 0 & 3 & 0 \end{pmatrix}, \quad \mathbf{C}_1 = \begin{pmatrix} 0 & \frac{1}{6} & 0 \\ \frac{1}{4} & 0 & \frac{1}{3} \\ 0 & \frac{1}{4} & 0 \end{pmatrix}$

1	0	1	2				
1	0	2	1	$\mathbf{A}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	1 1	$\int \frac{1}{12}$	$\frac{1}{12}$ $\frac{1}{12}$
0	1	2	1	$\mathbf{A}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}$,	$\mathbf{C}_2 = \begin{pmatrix} \frac{1}{12} \\ \frac{1}{2} \end{pmatrix}$	$\frac{\frac{1}{3}}{\frac{1}{4}}$ $\frac{\frac{1}{12}}{\frac{1}{4}}$
2	1	0	1	(-	- /	\12	12 12

Co-occurrence matrix Descriptors

- Maximum probability (strongest response to P)
 - $max_{i,j}(c_{ij})$
- Uniformity $\sum_i \sum_j c_{ij}^2$
- Entropy (randomness) $-\sum_{i}\sum_{i}c_{ij}\log_{2}c_{ij}$

Co-occurrence matrix Descriptors

- Example 1
 - Maximum probability = 1/3
 - Uniformity ≈ 0.264
 - Entropy ≈ undefined

$$\mathbf{C}_1 = \begin{pmatrix} 0 & \frac{1}{6} & 0\\ \frac{1}{4} & 0 & \frac{1}{3}\\ 0 & \frac{1}{4} & 0 \end{pmatrix}$$

SLU

Co-occurrence matrix Descriptors

- Example 2
 - Maximum probability = 1/3
 - Uniformity ≈ 0.167
 - Entropy ≈ 2.918

$$\mathbf{C}_2 = \begin{pmatrix} \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{3} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \end{pmatrix}$$

Spectral Analysis

Peaks in the Fourier spectrum give information about direction and spatial period patterns
The spectrum can be described using polar

• For each angle θ , $S(r,\theta)$ is a 1D function $S_{\theta}(r)$ • Similarly, for each frequency r, $S_{r}(\theta)$ is a 1D

A global description can be obtained by summing

Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Spectral Analysis

UPPSALA SLU

 $S_{\theta}(r)$ and $S_{r}(\theta)$

coordinates S(r,θ)

Co-occurrence matrix

· Match image with a co-occurrence matrix!

Central Moments

 For a 2D continuous function f(x,y), the moment of order (p + q) is defined as

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q f(x,y) \, dx \, dy$$

for p, q = 0,1,2,...

· The central moments are defined as

$$\mu_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \bar{x})^p (y - \bar{y})^q f(x, y) dx dy$$

where

$$\bar{x} = \frac{m_{10}}{m_{00}}$$
 and $\bar{y} = \frac{m_{01}}{m_{00}}$

Central Moments

• If f(x,y) is a digital image, the central moments become

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} f(x, y)$$

- The normalized central moments, denoted $\eta_{pq},$ are defined as

 $\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$

where $\gamma = \frac{p+q}{2} + 1$ for p+q = 2,3,...

Moment Invariants

- A set of seven invariant moments can be derived from the 2nd and 3rd moments
- These moments are invariant to changes in translation, rotation and scale

$$\begin{split} \phi_1 &= \eta_{20} + \eta_{02} \\ \phi_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ \phi_3 &= (\eta_{30} - \eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ \phi_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ \dots \text{(see textbook)} \end{split}$$

Invariant (Log)	Original	Half Size	Mirrored	Rotated 2°	Rotated 45°
ϕ_1	6.249	6.226	6.919	6.253	6.318
ϕ_2	17.180	16.954	19.955	17.270	16.803
ϕ_3	22.655	23.531	26.689	22.836	19.724
ϕ_4	22.919	24.236	26.901	23.130	20.437
ϕ_5	45.749	48.349	53.724	46.136	40.525
ϕ_6	31.830	32.916	37.134	32.068	29.315
d ₇	45.589	48.343	53,590	46.017	40.470

How to Design Descriptors?

- Find descriptors that are invariant to things that are unimportant for your task:
 - I.e. Noise, scale, blur, ...
- Find descriptors that are ekvivariant with the your task
 - height, to classify adults / children
 - color and shape to separate bananas, pears and tomatoes

Conclusions

- We went from object boundaries and image regions to a set of invariant numbers that we call descriptors (or features)
- Next lecture we take a look at classifiers!
- Exercises 11.19 and 11.25 are recommended

