Computer Assisted Image Analysis Lecture 2 – Point Processing

Anders Brun (anders@cb.uu.se) Centre for Image Analysis

Swedish University of Agricultural Sciences Uppsala University

Reading Instructions

Chapters for this lecture

• Chapter 2.6 - 2.6.4 and 3.1 - 3.3 in Gonzales-Woods.

Digital images

- Images denoted by functions, e.g. f(x,y) or g(x,y)
- Sampling in space, e.g. $(x, y) \in I$ and ||I|| = N, where I is a discrete set of pixel positions.
- Quantization in amplitude (intensity), $f(x,y) \in \{0,1,\dots(L-1)\}$

Image Processing

In image processing, the operator T transforms the input image into an output image, g(x,y)=T(f(x,y)).

Typical examples of image processing

- Image restoration: reduce noise and imaging artefacts
- Image enhancement: enhance edges, lines and subtle features for easier visual inspection
- Feature extraction, as input to subsequent image analysis

Image processing does NOT increase image information!

- Spatial domain (lectures 2, and 3)
 - ullet Brightness transforms, works per pixel o point processing,
 - Spatial filters, local transforms, works on small neighborhoods,
 - · Geometric transforms, interpolation,
- Frequency domain (lecture 3 and 4).
 - The Fast Fourier Transform (FFT)
 - · Lowpass-, bandpass- and highpass filters,
 - . . .

Image Processing

In spatial domain processing, the operator T is applied to each position $(x,\,y)$ in the input image f, defined over some neighborhood of (x,y), yielding a value $s=g(x,\,y)$ as output.

$$g(x, y) = T[f(x, y)]$$

In point processing, the operator neighborhood is the pixel itself.

$$s = T(r)$$
, where $r = f(x, y)$, $s = g(x, y)$.

In spatial filtering, larger neighborhoods are used. They are referred to as masks, filters, kernel windows or templates.

Point processing

Spatial filters

Gray Level Transform

Pixel-wise transform

- Change the gray level for each individual pixel.
- Compare to television: Brightness and contrast
 - brightness: additioncontrast: multiplication

 $\begin{array}{cccc} > 45^{\circ} & \rightarrow & \text{increased contrast} \\ < 45^{\circ} & \rightarrow & \text{decreased contrast} \\ \text{up} & \rightarrow & \text{increased brightness} \\ \text{down} & \rightarrow & \text{decreased brightness} \end{array}$

→□▶→□▶→□▶→□▼ 990

Image Histograms

A gray level histogram shows how many pixels there are at each intensity level. The bars either sum up to the total number of pixels, or to 1 (normalized) in a histogram.

Brightness

Contrast

Gray Level Transformations

Some basic gray level transformation functions used for image enhancement.

Original image

(Neutral transform)

Logarithmic transform

Gray Level Transformations

Negative or positive

- Original digital mammogram (left).
- Image negative to enhance white or gray details embedded in dark regions (right).

Gray Level Transformations

Log transformations

Visualize patterns in the dark region of an image

- Fourier spectrum (left).
- Result of applying the log transform (right).

Idea: Create an image with evenly distributed gray levels, for visual contrast enhancement

- The normalized gray level histogram gives the probability for a pixel to have a certain gray level, $p_k = n_k/N$
- Transform the image using the cumulative density function, $\operatorname{cdf}(k) = \sum_{i=0}^k p_i$ (or $= \int_{i=0}^k p(i) di$ in the continuous case)

• Continuous formula, where p(i) is the probability measure of the i grayvalue in the image if $s,r\in [0,L]$

$$s = T(r) = L \int_{i=0}^{r} p(i) = L \operatorname{cdf}(r)$$

• Discrete formula, where n_i is the number of pixels with intensity i and N is the total number of pixels and s_k and $r_k \in \{0,1,\ldots,(L-1)\}$:

$$s_k = T(r_k) = (L-1)\frac{\sum_{j=0}^k n_j}{N}$$

- Both formulas try to stretch r_{min} to 0 and r_{max} to either L or (L-1) (But do they succeed?)
- The histogram for the output image is uniform (theoretically in the continuous case), why not in our digital images?

Why does this work?

- \bullet Let p_r be the normalized histogram (probability function) for the input image f(x,y)
- Transform f(x,y) using $s=T(r)=L\int_0^r p_r(w)dw$
- Leibniz's Rule $\frac{ds}{dr} = \frac{dT(r)}{dr} = L\frac{d}{dr} \left[\int_0^r p_r(w) dw \right] = Lp_r(r).$
- Then from probability theory we have a formula for the probability density function (histogram) of the transformed variable (image), p_s

$$p_s = p_r(r) \left| \frac{dr}{ds} \right|$$

$$= p_r(r) \left| \frac{1}{Lp_r(r)} \right|$$

$$= 1/L$$

Original image.

Result of histogram equalization.

Intensity	0	1	2	3	4	5	6	7
Number of pixels	10	20	12	8	0	0	0	0

$$p(0) = 10/50 = 0.2$$

$$p(1) = 20/50 = 0.4$$

$$p(2) = 12/50 = 0.24$$

$$p(3) = 8/50 = 0.16$$

$$p(r) = 0/50 = 0, r = 4, 5, 6, 7$$

$$s_k = T(r_k) = (L-1)\frac{\sum_{j=0}^k n_j}{N} = (L-1)\sum_{j=0}^k p(j)$$

$$T(0) = 7 * (p(0)) \approx 1$$

$$T(1) = 7 * (p(0) + p(1)) \approx 4$$

$$T(2) = 7 * (p(0) + p(1) + p(2)) \approx 6$$

$$T(3) = 7 * (p(0) + p(1) + p(2) + p(3)) = 7$$

$$T(r) = 7, r = 4, 5, 6, 7$$

Intensity 0 1 2 3 4 5 6 7 Number of pixels 0 10 0 0 20 0 12 8

Example: Original image f(x, y)

Example: Histogram

Example: Normalized histogram

Example: Cumulative histogram

Example: Normalized cumulative histogram

Example: Histogram equalization transform

Example: Histogram equalization

Example: Equalized histograms

Transformations for image 1-4. Note that the transform for figure 4 (dashed line) is close to the neutral transform (dotted line).

Not always "optimal" for visual quality

Original.

Equalized.

Manual choice.

Transform image f(x,y) to match the histogram of image g(x,y)

- If s = T(r) maps f(x, y) to a uniform histogram
- ullet and u=G(t) maps g(x,y) to a uniform histogram
- Then $s = G^{-1}(T(r))$ maps f(x,y) to have a histogram similar to g(x,y)

- Information from two different images with the same size can be combined by adding, subtracting, multiplying or comparing the pixel values, pixel by pixel. Rounding to fit [0,L-1].
- For enhancement, segmentation, change detection.

Image 1.

Image 2.

Enhancement by image subtraction

- (a) Mask image.
- (b) Image (after injection of dye into the bloodstream) with mask subtracted out.

Images as Vectors

- We may regard images as vectors, i.e. a ordered set of scalars
- All pointwise arithmetic works for both images and vectors
- In fact, sometimes even the geometrical interpretation of vectors is natural for images, e.g. orthogonality
- However, by subtracting two images we may end up with negative pixel values. What is that?! Negative coefficients are natural for vectors, but not for e.g. light intensities or densities.
- Solution: Let's not care too much about that ... Deal with negative, very large and floating-point values by rounding to the closest integer in [0,L-1] before saving the resulting image.

Reduction of noise by averaging

Noise can be reduced by observing the same scene over a long period of time, and averaging the images. Top: original and a noisy image. Then noisy images averaged 8, 16, 64 and 128 times.

Reduction of noise by averaging

- Averaging yields a normally distributed resulting image (Central Limit Theorem)
- Averaging approaches the expected value of the noisy images (Law of large numbers)
- The standard deviation, after averaging M noisy uncorrelated images with standard deviation σ , is $\frac{1}{\sqrt{M}}\sigma$.
- (However, this only works for noise or image artefacts with expectation value zero, i.e. it is fine for Gaussian distributed noise but not for Poisson distributed noise.)

- An operator H is linear if
 - $H[a_i f_i(x, y) + a_j f_j(x, y)] = a_i H[f_i(x, y)] + a_j H[f_j(x, y)]$
- Linear operators have properties that make them useful in image analysis, in particular for image filtering
- The class of non-linear operators is huge
- ullet Example: \sin is non-linear ("The Freshman's dream")
 - $\sin(f_i(x,y)) + \sin(f_j(x,y)) \neq \sin(f_i(x,y) + f_j(x,y))$

- In Matlab, it is often useful to vectorize code: Operate on all pixels in an image at once. (.*, ./, +, -)
- For-loops are slower in Matlab.
- However, in languages such as C, for-loops are fast!
- Good to know how to vectorize code in Matlab, as well as how to construct for-loops that are more useful in C.

Lab 1

- The first lab contains a mix of things to get you started
- Unfortunately, it is scheduled early, so some concepts such as local operators have not been introduced
- Read ahead and ask for help!

- Problems 2.22, 2.18, 2.9, 3.1, 3.5 and 3.6 in Gonzales-Woods.
- Download answers from http://www.imageprocessingplace.com.

- Read, read, read
- Experiment in Matlab
- Do the review questions

