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Reading Instructions
Chapters for this lecture

• Chapter 2.6� 2.6.4 and 3.1� 3.3 in
Gonzales-Woods.
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Previous Lecture
Digitization

Digital images

• Images denoted by functions, e.g. f(x, y) or g(x, y)

• Sampling in space, e.g. (x, y) 2 I and ||I|| = N , where I is a
discrete set of pixel positions.

• Quantization in amplitude (intensity),
f(x, y) 2 {0, 1, . . . (L� 1)}
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Image Processing
In image processing, the operator T transforms the input image
into an output image, g(x, y) = T (f(x, y)).

Typical examples of image processing

• Image restoration: reduce noise and imaging artefacts

• Image enhancement: enhance edges, lines and subtle features
for easier visual inspection

• Feature extraction, as input to subsequent image analysis

Image processing does NOT increase image information!
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Image Processing

• Spatial domain (lectures 2, and 3)
• Brightness transforms, works per pixel ! point processing,
• Spatial filters, local transforms, works on small neighborhoods,
• Geometric transforms, interpolation,

• Frequency domain (lecture 3 and 4).
• The Fast Fourier Transform (FFT)
• Lowpass-, bandpass- and highpass filters,
• . . .
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Image Processing
In spatial domain processing, the operator T is applied to each
position (x, y) in the input image f , defined over some
neighborhood of (x, y), yielding a value s = g(x, y) as output.

g(x, y) = T [f(x, y)]

In point processing, the operator neighborhood is the pixel itself.

s = T (r),where r = f(x, y), s = g(x, y).

In spatial filtering, larger neighborhoods are used. They are
referred to as masks, filters, kernel windows or templates.

Point processing Spatial filters
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Gray Level Transform

Pixel-wise transform

• Change the gray level for each individual pixel.
• Compare to television: Brightness and contrast

• brightness: addition
• contrast: multiplication

> 45� ! increased contrast
< 45� ! decreased contrast
up ! increased brightness
down ! decreased brightness
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Image Histograms
A gray level histogram shows how many pixels there are at each
intensity level. The bars either sum up to the total number of
pixels, or to 1 (normalized) in a histogram.
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Image Processing
Brightness

Subtract. Add.
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Image Processing
Contrast

Multiply
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Gray Level Transformations
Some basic gray level transformation functions used for image
enhancement.
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Gray Level Transformations
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Gray Level Transformations
Negative or positive

• Original digital mammogram (left).
• Image negative to enhance white or gray details embedded in
dark regions (right).
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Gray Level Transformations
Log transformations

Visualize patterns in the dark region of an image

• Fourier spectrum (left).

• Result of applying the log transform (right).
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Histogram Equalization

Idea: Create an image with evenly distributed gray levels, for
visual contrast enhancement

• The normalized gray level histogram gives the probability for a
pixel to have a certain gray level, p

k

= n
k

/N

• Transform the image using the cumulative density function,
cdf(k) =

P
k

i=0 pi (or =
R
k

i=0 p(i)di in the continuous case)
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Histogram Equalization
• Continuous formula, where p(i) is the probability measure of
the i grayvalue in the image if s, r 2 [0, L]

s = T (r) = L
R
r

i=0 p(i) = L cdf(r)

• Discrete formula, where n
i

is the number of pixels with
intensity i and N is the total number of pixels and s

k

and
r
k

2 {0, 1, . . . , (L� 1)} :

s
k

= T (r
k

) = (L� 1)
Pk

j=0 nj

N

• Both formulas try to stretch r
min

to 0 and r
max

to either L
or (L� 1) (But do they succeed?)

• The histogram for the output image is uniform (theoretically
in the continuous case), why not in our digital images?
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Histogram Equalization
Why does this work?

• Let p
r

be the normalized histogram (probability function) for
the input image f(x, y)

• Transform f(x, y) using s = T (r) = L
R
r

0 p
r

(w)dw

• Leibniz´s Rule ds

dr

= dT (r)
dr

= L d

dr

⇥R
r

0 p
r

(w)dw
⇤
= Lp

r

(r).

• Then from probability theory we have a formula for the
probability density function (histogram) of the transformed
variable (image), p

s

p
s

= p
r

(r)|dr
ds

|

= p
r

(r)

����
1

Lp
r

(r)

����

= 1/L
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Histogram Equalization

Original image.

Result of histogram equalization.
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Histogram Equalization Example

Intensity 0 1 2 3 4 5 6 7
Number of pixels 10 20 12 8 0 0 0 0

p(0) = 10/50 = 0.2
p(1) = 20/50 = 0.4
p(2) = 12/50 = 0.24
p(3) = 8/50 = 0.16
p(r) = 0/50 = 0, r = 4, 5, 6, 7
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Histogram Equalization Example (cont.)

s
k

= T (r
k

) = (L� 1)
Pk

j=0 nj

N

= (L� 1)
P

k

j=0 p(j)

T (0) = 7 ⇤ (p(0)) ⇡ 1
T (1) = 7 ⇤ (p(0) + p(1)) ⇡ 4
T (2) = 7 ⇤ (p(0) + p(1) + p(2)) ⇡ 6
T (3) = 7 ⇤ (p(0) + p(1) + p(2) + p(3)) = 7
T (r) = 7, r = 4, 5, 6, 7

Intensity 0 1 2 3 4 5 6 7
Number of pixels 0 10 0 0 20 0 12 8
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Histogram Equalization
Example: Original image f(x, y)
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Histogram Equalization
Example: Histogram
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Histogram Equalization
Example: Normalized histogram
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Histogram Equalization
Example: Cumulative histogram



25/41

Histogram Equalization
Example: Normalized cumulative histogram
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Histogram Equalization
Example: Histogram equalization transform
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Histogram Equalization
Example: Histogram equalization
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Histogram Equalization
Example: Equalized histograms
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Histogram Equalization

Transformations for image 1� 4.
Note that the transform for figure
4 (dashed line) is close to the
neutral transform (dotted line).
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Histogram Equalization
Not always “optimal” for visual quality

Original. Equalized. Manual choice.
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Histogram Matching

Transform image f(x, y) to match the histogram of image g(x, y)

• If s = T (r) maps f(x, y) to a uniform histogram

• and u = G(t) maps g(x, y) to a uniform histogram

• Then s = G�1(T (r)) maps f(x, y) to have a histogram
similar to g(x, y)
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Arithmetic/Logical Operations

• Information from two di↵erent images with the same size can
be combined by adding, subtracting, multiplying or comparing
the pixel values, pixel by pixel. Rounding to fit [0, L� 1].

• For enhancement, segmentation, change detection.



33/41

Arithmetic/Logical Operations

Image 1. Image 2.
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Arithmetic/Logical Operations
Enhancement by image subtraction

(a) Mask image.
(b) Image (after injection of dye into the bloodstream) with mask

subtracted out.
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Arithmetic/Logical Operations
Images as Vectors

• We may regard images as vectors, i.e. a ordered set of scalars

• All pointwise arithmetic works for both images and vectors

• In fact, sometimes even the geometrical interpretation of
vectors is natural for images, e.g. orthogonality

• However, by subtracting two images we may end up with
negative pixel values. What is that?! Negative coe�cients are
natural for vectors, but not for e.g. light intensities or
densities.

• Solution: Let´s not care too much about that ... Deal with
negative, very large and floating-point values by rounding to
the closest integer in [0, L� 1] before saving the resulting
image.
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Arithmetic/Logical Operations
Reduction of noise by averaging

Noise can be reduced by
observing the same scene
over a long period of time,
and averaging the images.
Top: original and a noisy
image. Then noisy images
averaged 8, 16, 64 and
128 times.
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Arithmetic/Logical Operations
Reduction of noise by averaging

• Averaging yields a normally distributed resulting image
(Central Limit Theorem)

• Averaging approaches the expected value of the noisy images
(Law of large numbers)

• The standard deviation, after averaging M noisy uncorrelated
images with standard deviation �, is 1p

M

�.

• (However, this only works for noise or image artefacts with
expectation value zero, i.e. it is fine for Gaussian distributed
noise but not for Poisson distributed noise.)
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Linear vs Non-Linear Operations

• An operator H is linear if
• H[aifi(x, y) + ajfj(x, y)] = aiH[fi(x, y)] + ajH[fj(x, y)]]

• Linear operators have properties that make them useful in
image analysis, in particular for image filtering

• The class of non-linear operators is huge
• Example: sin is non-linear (“The Freshman´s dream”)

• sin(fi(x, y)) + sin(fj(x, y)) 6= sin(fi(x, y) + fj(x, y))
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Vectorization vs Looping

• In Matlab, it is often useful to vectorize code: Operate on all
pixels in an image at once. (.*, ./, +, -)

• For-loops are slower in Matlab.

• However, in languages such as C, for-loops are fast!

• Good to know how to vectorize code in Matlab, as well as
how to construct for-loops that are more useful in C.
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Lab 1

• The first lab contains a mix of things to get you started

• Unfortunately, it is scheduled early, so some concepts such as
local operators have not been introduced

• Read ahead and ask for help!
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Review Questions

• Problems 2.22, 2.18, 2.9, 3.1, 3.5 and 3.6 in
Gonzales-Woods.

• Download answers from
http://www.imageprocessingplace.com.
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Until Next Lecture

• Read, read, read

• Experiment in Matlab

• Do the review questions
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