Software has bugs

• To find them, we use testing and code reviews

• But some bugs are still missed
 ▪ Rare features
 ▪ Rare circumstances
 ▪ Nondeterminism
Static analysis

• Can analyze all possible runs of a program
 ▪ Lots of interesting ideas and tools
 ▪ Commercial companies sell, use static analysis
 ▪ It all looks good on paper, and in papers

• But can developers use it?
 ▪ Our experience: Not easily
 ▪ Results in papers describe use by static analysis experts
 ▪ Commercial viability implies you must deal with developer confusion, false positives, error management,..
One Issue: Abstraction

• Abstraction lets us scale and model all possible runs
 ■ But it also introduces conservatism
 ■ *-sensitivities attempt to deal with this
 - * = flow-, context-, path-, field-, etc
 ■ But they are never enough

• Static analysis abstraction ≠ developer abstraction
 ■ Because the developer didn’t have them in mind
Symbolic execution: a middle ground

• Testing works
 ▪ But, each test only explores one possible execution
 - `assert(f(3) == 5)`
 ▪ We hope test cases generalize, but no guarantees

• Symbolic execution generalizes testing
 ▪ Allows unknown symbolic variables in evaluation
 - `y = α; assert(f(y) == 2*y-1);`
 ▪ If execution path depends on unknown, conceptually fork symbolic executor
 - `int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }`
Symbolic Execution Example

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10. }
11. assert(x+y+z!=3)
Insight

• Each symbolic execution path stands for *many* actually program runs
 ▪ In fact, exactly the set of runs whose concrete values satisfy the path condition

• Thus, we can cover a lot more of the program’s execution space than testing
Early work on symbolic execution

• James C. King. Symbolic execution and program testing. CACM, 19(7):385–394, 1976. (most cited)

The problem

• Computers were small (not much memory) and slow (not much processing power)
 ▪ Apple’s iPad 2 is as fast as a Cray-2 from the 1980’s

• Symbolic execution can be extremely expensive
 ▪ Lots of possible program paths
 ▪ Need to query solver a lot to decide which paths are feasible, which assertions could be false
 ▪ Program state has many bits
Today

- Computers are much faster, memory is cheap
- There are very powerful SMT/SAT solvers today
 - SMT = Satisfiability Modulo Theories = SAT++
 - Can solve very large instances, very quickly
 - Lets us check assertions, prune infeasible paths
 - We’ve used Z3, STP, and Yices
- Recent success: bug finding
 - Heuristic search through space of possible executions
 - Find really interesting bugs
Path explosion

• Usually can’t run symbolic execution to exhaustion
 - Exponential in branching structure

 1. int a = α, b = β, c = γ; // symbolic
 2. if (a) ... else ...;
 3. if (b) ... else ...;
 4. if (c) ... else ...;

 - Ex: 3 variables, 8 program paths

 - Loops on symbolic variables even worse

 1. int a = α; // symbolic
 2. while (a) do ...;
 3.

 - Potentially 2^{31} paths through loop!
Basic search

• Simplest ideas: algorithms 101
 ▪ Depth-first search (DFS)
 ▪ Breadth-first search (BFS)

• Potential drawbacks
 ▪ Neither is guided by any higher-level knowledge
 - Probably a bad sign
 ▪ DFS could easily get stuck in one part of the program
 - E.g., it could keep going around a loop over and over again
 ▪ Of these two, BFS is a better choice
Search strategies

• Need to prioritize search
 ▪ Try to steer search towards paths more likely to contain assertion failures
 ▪ Only run for a certain length of time
 - So if we don’t find a bug/vulnerability within time budget, too bad

• Think of program execution as a DAG
 ▪ Nodes = program states
 ▪ Edge(n1,n2) = can transition from state n1 to state n2
• Then we need some kind of graph exploration strategy
 ▪ At each step, pick among all possible paths
Randomness

• We don’t know a priori which paths to take, so adding some randomness seems like a good idea
 ▪ Idea 1: pick next path to explore uniformly at random (Random Path, RP)
 ▪ Idea 2: randomly restart search if haven’t hit anything interesting in a while
 ▪ Idea 3: when have equal priority paths to explore, choose next one at random
 - All of these are good ideas, and randomness is very effective

• One drawback: reproducibility
 ▪ Probably good to use psuedo-randomness based on seed, and then record which seed is picked
 ▪ (More important for symbolic execution implementers than users)
Coverage-guided heuristics

• Idea: Try to visit statements we haven’t seen before

• Approach
 ■ Score of statement = # times it’s been seen and how often
 ■ Pick next statement to explore that has lowest score

• Why might this work?
 ■ Errors are often in hard-to-reach parts of the program
 ■ This strategy tries to reach everywhere.

• Why might this not work?
 ■ Maybe never be able to get to a statement if proper precondition not set up

• KLEE = RP + coverage-guided
Generational search

- Hybrid of BFS and coverage-guided
- Generation 0: pick one program at random, run to completion
- Generation 1: take paths from gen 0, negate one branch condition on a path to yield a new path prefix, find a solution for that path prefix, and then take the resulting path
 - Note will semi-randomly assign to any variables not constrained by the path prefix
- Generation n: similar, but branching off gen n-1
- Also uses a coverage heuristic to pick priority
Combined search

• Run multiple searches at the same time
• Alternate between them
 ▪ E.g., Fitnext

• Idea: no one-size-fits-all solution
 ▪ Depends on conditions needed to exhibit bug
 ▪ So will be as good as “best” solution, which a constant factor for wasting time with other algorithms
 ▪ Could potentially use different algorithms to reach different parts of the program
SMT solver performance

- SAT solvers are at core of SMT solvers
 - In theory, could reduce all SMT queries to SAT queries
 - In practice, SMT and higher-level optimizations are critical

- Some examples
 - Simple identities ($x + 0 = x, x \times 0 = 0$)
 - Theory of arrays ($\text{read}(42, \text{write}(42, x, A)) = x$)
 - 42 = array index, A = array, x = element
 - Caching (memoize solver queries)
 - Remove useless variables
 - E.g., if trying to show path feasible, only the part of the path condition related to variables in guard are important
Libraries and native code

• At some point, symbolic execution will reach the “edges” of the application
 ▪ Library, system, or assembly code calls

• In some cases, could pull in that code also
 ▪ E.g., pull in libc and symbolically execute it
 ▪ But glibc is insanely complicated
 - Symbolic execution can easily get stuck in it
 ▪ ⇒ pull in a simpler version of libc, e.g., newlib
 - libc versions for embedded systems tend to be simpler

• In other cases, need to make models of code
 ▪ E.g., implement ramdisk to model kernel fs code
 ▪ This is a lot of work!
Concolic execution

• Also called *dynamic symbolic execution*

• Instrument the program to do symbolic execution as the program runs
 - I.e., shadow concrete program state with symbolic variables

• Explore one path at a time, start to finish
 - Always have a concrete underlying value to rely on
Concretization

• Concolic execution makes it really easy to concretize
 ▪ Replace symbolic variables with concrete values that satisfy the path condition
 - Always have these around in concolic execution

• So, could actually do system calls
 ▪ But we lose symbolic-ness at such calls

• And can handle cases when conditions too complex for SMT solver
 ▪ But can do the same in pure symbolic system
Resurgence of symbolic execution

• Two key systems that triggered revival of this topic:
 - DART — Godefroid and Sen, PLDI 2005
 - Godefroid = model checking, formal systems background
 - EXE — Cadar, Ganesh, Pawlowski, Dill, and Engler, CCS 2006
 - Ganesh and Dill = SMT solver called “STP” (used in implementation)
 - Theory of arrays
 - Cadar and Engler = systems
Recent successes, run on binaries

• SAGE
 ▪ Microsoft (Godefroid) concolic executor
 ▪ Symbolic execution to find bugs in file parsers
 - E.g., JPEG, DOCX, PPT, etc
 ▪ Cluster of n machines continually running SAGE

• Mayhem
 ▪ Developed at CMU (Brumley et al), runs on binaries
 ▪ Uses BFS-style search and native execution
 ▪ Automatically generates exploits when bugs found
KLEE

• Symbolically executes LLVM bitcode
 ▪ LLVM compiles source file to .bc file
 ▪ KLEE runs the .bc file

• Works in the style of our example interpreter
 ▪ Uses fork() to manage multiple states
 ▪ Employs a variety of search strategies
 ▪Mocks up the environment to deal with system calls, file accesses, etc.
Figure 6: Relative coverage difference between KLEE and the COREUTILS manual test suite, computed by subtracting the executable lines of code covered by manual tests (L_{man}) from KLEE tests (L_{klee}) and dividing by the total possible: $(L_{klee} - L_{man})/L_{total}$. Higher bars are better for KLEE, which beats manual testing on all but 9 applications, often significantly.
Figure 7: KLEE-generated command lines and inputs (modified for readability) that cause program crashes in COREUTILS version 6.10 when run on Fedora Core 7 with SELinux on a Pentium machine.
Other symbolic executors

• Cloud9 — parallel symbolic execution, also supports threads
• Pex — symbolic execution for .NET
• jCUTE — symbolic execution for Java
• Java PathFinder — a model checker that also supports symbolic execution