Low-Level C
Programming

Functions
Tasks
Assembly



Compile & Link



UNIVERSITET

One Binary

m Your work will result in a single
binary containing:
» Operating system
» Task code
» Static data

m This Is loaded into the target
memory when using “run.sh”

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UPPSALA
UNIVERSITET

Tasks & Single Binary

m Tasks are not loaded dynamically
» All exist in the loaded binary

» Started dynamically, however
= (some systems even have static tasks)

» Very common style in embedded systems
m Task=
» A C function

# Called when task iIs started
» Never returns

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UPPSALA

B Desktop vs Embedded

m Desktop-Style m Embedded-Style

Tasks loaded
when started,

P

(@)

O

@)

-

e

8 at dynamic

|_ addresses

= task Ve

e

®

- task

p -

O

Y

= <
s | low

Department of Information Technology | www.it.uu.se



UPPSALA
UNIVERSITET

>\
@)
O
@)
-
e
O
()
|_
-
RS
el
®
=
-
O
Y
-

Desktop vs Embedded

m Desktop-Style

Tasks loaded

when started,

at dynamic
addresses

task

task

OS

y

Department of Information Technology | www.it.uu.se

m Embedded-Style

All tasks are
part of the
binary loaded
at system start

task |

task

OS




UPPSALA
UNIVERSITET

User Code

C Source T\

Real-World Compilation

<C Runtime>

/<Object File

C Source M Compiler

C Source T/

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se

-

_.<object File>\

ot
|

\<Object File>—>

Linker

<Other Lib

<Executab|e>

Hardware




u
UNIVERSITET

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Your Case

User Code

C Source T\

C Runtlme

C Source M

Compiler

Object File

C Source T/

Department of Information Technology | www.it.uu.se

N\

<Object File

Linker

<Executab|e>

\ 4

Simulated HW




e
e
I N O C Li b ral y

m The C library In gcc assumes an OS

m Cannot be used, so:
» printf()
» scanf()
» strcat()
» strtok()
* elc.

m Have to be provided by yourselves

>\
@)
O
@)
-
e
&
b
|_
-
RS
el
©
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



Integrating C and Asm



UNIVERSITET

C and assembler

m C compiler generates assembly code

m Following conventions:
» How to call a function
» Where to put parameters
» How to return a function value
# = this defines the ABI
» ABl = Applications Binary Interface

m We & gcc use standard MIPS ABI

>\
@)
O
@)
-
e
O
()
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

Calling C from asm

m Parameters:

#* Registers a0 to a3
= For the first four integer/pointer args
= Other types: other rules

m Return value:

* Register vO
= Pointers & integers

m Calling method:-
# “jal FUNCTIONNAME”

>\
@)
O
@)
-
e
&
b
|_
-
RS
el
©
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UPPSALA
UNIVERSITET

Calling C from asm

® Name handling:
#* LiInker resolves all names
# C Function names = asm labels

mC:
#* Function cannot be static
#» Defined in any source file

m ASM:
# Name declared as ”.glob1”

>\
@)
O
@)
-
e
&
b
|_
-
RS
el
©
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

Calling asm from C

m Asm will have to receive arguments
and returns values according to C
rules
#» a0..a3 for parameters
» VO for return value
» ra for return address

>\
@)
O
@)
-
e
&
b
|_
-
RS
el
©
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

Calling asm from C

m Declare function In C file:

# void asm_foo(int a);

m Declare global label in asm file:

* .globl asm_foo

m Call from C like any function:
* asm_foo(15)

m Return in asm using jr:

* Jjr ra

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

C and assembler

m Look In example files!

>\
@)
O
@)
-
e
&
b
|_
-
RS
el
©
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



Starting the OS



Sl
e
B Sta rt i n g th e O S

m Before compiled C code can run,
some things must be setup:
# Sp:. stack pointer
#» gp: global pointer

m This has to be done in assembly

#* see asm.S for an example:

Ta gp, 0x80000000
la sp,init_stack-32
j kinit

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



e 22

m Also, exception handling has to be
Initialized
» See asm.S for an example

» |t copies basic handling code to the
right place in memory

m Note on MIPS:

» Exceptions are handled by jumping to a
certain address, where a jump to the
real handler is placed

>\
@)
O
@)
-
e
O
()
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



Sl
e
B Sta rt i n g th e O S

m Where Is the starting point?
» Not at 0x8020_0000!
» Depends on your binary

» Handled by Simics start script ©
= Look at "%pc” when Simics has loaded
= Trace the start of "example_timer”

# INn C: function called 7kinit()”
= See asm.S for how this is started

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

Initial label

m Special label In asm: _start
#* This IS where program starts

m Can end up any place in memory

m Pointed to by metadata in binary
» “elf” format has an entry address

m Found and initialized by Simics

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



Programming Tasks



UNIVERSITET

Starting a Task

m A task Is a C-function
» Parameters? — that is up to you!
* Return type? — that Is up to you!

m Before starting the function:
» Setup SP
» Setup GP
* Setup parameters
» And then go there

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

Programming a Task

m Quit task explicitly
m Or end If the "infinite” loop Is finite

>
®) .

[*8 ® Function that never returns
O . .

- * void task(void)

L {

0 while(1)

— {

- ...code...

O }

b }

-

. -

O

Y

=

Department of Information Technology | www.it.uu.se



UPPSALA
UNIVERSITET

Function Pointer

func(param); // calls function pointer

}
# call(foo,15) // “foo” becomes addr of foo

D

(@) .

% = C way to point to code

I8 = Slightly tricky syntax:

8 # RETURN_TYPE (*name) (PARAMS)

- i

= ® Easy to use:

O * void foo(void); // prototype for function
tﬁ * void call( void(*func)(int), int param)
- {

p -

O

(el

=

Department of Information Technology | www.it.uu.se



OS Questions



m Each task has its own stack

m Kernel will need 1ts own stack

» Called using “syscall” = runs In
exception mode

>\
@)
O
@)
-
e
&
b
|_
-
RS
el
©
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

Recursion in C

m Recursion = function call
#* Parameters & return value as usual

m No tail-recursion optimization

* A tail-recursive task will eat up stack as -
It Is recursively called :

# NB: stack iIs fixed-size limited!
#* Known bounds on all recursion!

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



UNIVERSITET

Timer Interrupt

m See example timer.c ©

* The MIPS processor has a built-in
counter register for timer interrupts

m Will need to do task switch
* To Implement round-robin

>\
@)
O
@)
-
e
O
b
|_
-
RS
el
®
=
-
O
Y
-

Department of Information Technology | www.it.uu.se



	Low-Level C Programming
	Compile & Link
	One Binary
	Tasks & Single Binary
	Desktop vs Embedded
	Desktop vs Embedded
	Real-World Compilation
	Your Case
	No C Library
	Integrating C and Asm
	C and assembler
	Calling C from asm
	Calling C from asm
	Calling asm from C
	Calling asm from C
	C and assembler
	Starting the OS
	Starting the OS
	Starting the OS
	Starting the OS
	Initial label
	Programming Tasks
	Starting a Task
	Programming a Task
	Function Pointer
	OS  Questions
	Stacks
	Recursion in C
	Timer Interrupt

