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One Binary

� Your work will result in a single 
binary containing:
�Operating system
�Task code
�Static data

� This is loaded into the target 
memory when using “run.sh”
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Tasks & Single Binary
� Tasks are not loaded dynamically

� All exist in the loaded binary
� Started dynamically, however

� (some systems even have static tasks)

� Very common style in embedded systems

� Task=
� A C function
� Called when task is started
� Never returns
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Desktop vs Embedded
� Desktop-Style � Embedded-Style

OS Disk

task

task

Tasks loaded 
when started, 
at dynamic 
addresses
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Desktop vs Embedded
� Desktop-Style � Embedded-Style

OS Disk

task

task

Tasks loaded 
when started, 
at dynamic 
addresses

OS

task

task

All tasks are 
part of the 

binary loaded 
at system start
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Real-World Compilation

Linker
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Object File
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Your Case

Linker

C Source

Compiler

Object File

C Source

C Source

Object File

Object File

C Library

C Runtime

Other Lib

OS

Simulated HW

User CodeUser Code

Executable



In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

No C Library

� The C library in gcc assumes an OS
� Cannot be used, so:

�printf()
� scanf()
� strcat()
� strtok()
�etc.

� Have to be provided by yourselves



Integrating C and Asm
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C and assembler

� C compiler generates assembly code
� Following conventions:

�How to call a function
�Where to put parameters
�How to return a function value
�= this defines the ABI
�ABI = Applications Binary Interface

� We & gcc use standard MIPS ABI



In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling C from asm

� Parameters:
�Registers a0 to a3
� For the first four integer/pointer args
� Other types: other rules

� Return value:
�Register v0
� Pointers & integers

� Calling method:
� “jal FUNCTIONNAME”
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Calling C from asm

� Name handling:
� Linker resolves all names
�C Function names = asm labels

� C:
�Function cannot be static
�Defined in any source file

� ASM:
�Name declared as ”.globl”
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Calling asm from C

� Asm will have to receive arguments 
and returns values according to C 
rules
�a0..a3 for parameters
�v0 for return value
� ra for return address



In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling asm from C

� Declare function in C file:
� void asm_foo(int a);

� Declare global label in asm file:
� .globl asm_foo

� Call from C like any function:
� asm_foo(15)

� Return in asm using jr:
� jr ra



In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

C and assembler

� Look in example files!



Starting the OS
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Starting the OS

� Before compiled C code can run, 
some things must be setup:
� sp: stack pointer
�gp: global pointer 

� This has to be done in assembly
� see asm.S for an example:
la gp, 0x80000000

la sp,init_stack-32

j  kinit
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Starting the OS

� Also, exception handling has to be 
initialized
�See asm.S for an example
� It copies basic handling code to the 

right place in memory

� Note on MIPS:
�Exceptions are handled by jumping to a 

certain address, where a jump to the 
real handler is placed
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Starting the OS

� Where is the starting point?
�Not at 0x8020_0000!
�Depends on your binary
�Handled by Simics start script ☺
� Look at ”%pc” when Simics has loaded
� Trace the start of ”example_timer”

� In C: function called ”kinit()”
� See asm.S for how this is started
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Initial label

� Special label in asm: _start
�This is where program starts

� Can end up any place in memory
� Pointed to by metadata in binary

� “elf” format has an entry address

� Found and initialized by Simics



Programming Tasks
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Starting a Task

� A task is a C-function
�Parameters? – that is up to you!
�Return type? – that is up to you!

� Before starting the function:
�Setup SP
�Setup GP
�Setup parameters
�And then go there
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Programming a Task

� Function that never returns
� void task(void)
{
while(1) 
{

...code...
}

}

� Quit task explicitly
� Or end if the ”infinite” loop is finite
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Function Pointer

� C way to point to code
� Slightly tricky syntax:

� RETURN_TYPE (*name)(PARAMS)

� Easy to use:
� void foo(void); // prototype for function

� void call( void(*func)(int), int param)
{

func(param); // calls function pointer
}

� call(foo,15)   // “foo” becomes addr of foo



OS  Questions
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Stacks

� Each task has its own stack
� Kernel will need its own stack

�Called using “syscall” = runs in 
exception mode
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Recursion in C

� Recursion = function call
�Parameters & return value as usual

� No tail-recursion optimization
�A tail-recursive task will eat up stack as 

it is recursively called
�NB: stack is fixed-size limited!
�Known bounds on all recursion!
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Timer Interrupt

� See example_timer.c ☺
�The MIPS processor has a built-in 

counter register for timer interrupts

� Will need to do task switch
�To implement round-robin 
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