
Low-Level C
Programming

Functions
Tasks

Assembly

Compile & Link

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

One Binary

Your work will result in a single
binary containing:

Operating system
Task code
Static data

This is loaded into the target
memory when using “run.sh”

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Tasks & Single Binary
Tasks are not loaded dynamically

All exist in the loaded binary
Started dynamically, however

(some systems even have static tasks)

Very common style in embedded systems

Task=
A C function
Called when task is started
Never returns

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Desktop vs Embedded
Desktop-Style Embedded-Style

OS Disk

task

task

Tasks loaded
when started,
at dynamic
addresses

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Desktop vs Embedded
Desktop-Style Embedded-Style

OS Disk

task

task

Tasks loaded
when started,
at dynamic
addresses

OS

task

task

All tasks are
part of the

binary loaded
at system start

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Real-World Compilation

Linker

C Source

Compiler

Object File

C Source

C Source

Object File

Object File

C Library

C Runtime

Other Lib

OS

Hardware

User CodeUser Code

Executable

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Your Case

Linker

C Source

Compiler

Object File

C Source

C Source

Object File

Object File

C Library

C Runtime

Other Lib

OS

Simulated HW

User CodeUser Code

Executable

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

No C Library

The C library in gcc assumes an OS
Cannot be used, so:

printf()
scanf()
strcat()
strtok()
etc.

Have to be provided by yourselves

Integrating C and Asm

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

C and assembler

C compiler generates assembly code
Following conventions:

How to call a function
Where to put parameters
How to return a function value
= this defines the ABI
ABI = Applications Binary Interface

We & gcc use standard MIPS ABI

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling C from asm

Parameters:
Registers a0 to a3

For the first four integer/pointer args
Other types: other rules

Return value:
Register v0

Pointers & integers

Calling method:
“jal FUNCTIONNAME”

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling C from asm

Name handling:
Linker resolves all names
C Function names = asm labels

C:
Function cannot be static
Defined in any source file

ASM:
Name declared as ”.globl”

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling asm from C

Asm will have to receive arguments
and returns values according to C
rules

a0..a3 for parameters
v0 for return value
ra for return address

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling asm from C

Declare function in C file:
void asm_foo(int a);

Declare global label in asm file:
.globl asm_foo

Call from C like any function:
asm_foo(15)

Return in asm using jr:
jr ra

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

C and assembler

Look in example files!

Starting the OS

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting the OS

Before compiled C code can run,
some things must be setup:

sp: stack pointer
gp: global pointer

This has to be done in assembly
see asm.S for an example:
la gp, 0x80000000

la sp,init_stack-32

j kinit

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting the OS

Also, exception handling has to be
initialized

See asm.S for an example
It copies basic handling code to the
right place in memory

Note on MIPS:
Exceptions are handled by jumping to a
certain address, where a jump to the
real handler is placed

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting the OS

Where is the starting point?
Not at 0x8020_0000!
Depends on your binary
Handled by Simics start script ☺

Look at ”%pc” when Simics has loaded
Trace the start of ”example_timer”

In C: function called ”kinit()”
See asm.S for how this is started

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Initial label

Special label in asm: _start
This is where program starts

Can end up any place in memory
Pointed to by metadata in binary

“elf” format has an entry address

Found and initialized by Simics

Programming Tasks

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting a Task

A task is a C-function
Parameters? – that is up to you!
Return type? – that is up to you!

Before starting the function:
Setup SP
Setup GP
Setup parameters
And then go there

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Programming a Task

Function that never returns
void task(void)
{
while(1)
{

...code...
}

}

Quit task explicitly
Or end if the ”infinite” loop is finite

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Function Pointer

C way to point to code
Slightly tricky syntax:

RETURN_TYPE (*name)(PARAMS)

Easy to use:
void foo(void); // prototype for function

void call(void(*func)(int), int param)
{

func(param); // calls function pointer
}

call(foo,15) // “foo” becomes addr of foo

OS Questions

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Stacks

Each task has its own stack
Kernel will need its own stack

Called using “syscall” = runs in
exception mode

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Recursion in C

Recursion = function call
Parameters & return value as usual

No tail-recursion optimization
A tail-recursive task will eat up stack as
it is recursively called
NB: stack is fixed-size limited!
Known bounds on all recursion!

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Timer Interrupt

See example_timer.c ☺
The MIPS processor has a built-in
counter register for timer interrupts

Will need to do task switch
To implement round-robin

	Low-Level C Programming
	Compile & Link
	One Binary
	Tasks & Single Binary
	Desktop vs Embedded
	Desktop vs Embedded
	Real-World Compilation
	Your Case
	No C Library
	Integrating C and Asm
	C and assembler
	Calling C from asm
	Calling C from asm
	Calling asm from C
	Calling asm from C
	C and assembler
	Starting the OS
	Starting the OS
	Starting the OS
	Starting the OS
	Initial label
	Programming Tasks
	Starting a Task
	Programming a Task
	Function Pointer
	OS Questions
	Stacks
	Recursion in C
	Timer Interrupt

