
Low-Level C
Programming

Functions
Tasks

Assembly

Compile & Link

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

One Binary

� Your work will result in a single
binary containing:
�Operating system
�Task code
�Static data

� This is loaded into the target
memory when using “run.sh”

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Tasks & Single Binary
� Tasks are not loaded dynamically

� All exist in the loaded binary
� Started dynamically, however

� (some systems even have static tasks)

� Very common style in embedded systems

� Task=
� A C function
� Called when task is started
� Never returns

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Desktop vs Embedded
� Desktop-Style � Embedded-Style

OS Disk

task

task

Tasks loaded
when started,
at dynamic
addresses

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Desktop vs Embedded
� Desktop-Style � Embedded-Style

OS Disk

task

task

Tasks loaded
when started,
at dynamic
addresses

OS

task

task

All tasks are
part of the

binary loaded
at system start

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Real-World Compilation

Linker

C Source

Compiler

Object File

C Source

C Source

Object File

Object File

C Library

C Runtime

Other Lib

OS

Hardware

User CodeUser Code

Executable

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Your Case

Linker

C Source

Compiler

Object File

C Source

C Source

Object File

Object File

C Library

C Runtime

Other Lib

OS

Simulated HW

User CodeUser Code

Executable

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

No C Library

� The C library in gcc assumes an OS
� Cannot be used, so:

�printf()
� scanf()
� strcat()
� strtok()
�etc.

� Have to be provided by yourselves

Integrating C and Asm

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

C and assembler

� C compiler generates assembly code
� Following conventions:

�How to call a function
�Where to put parameters
�How to return a function value
�= this defines the ABI
�ABI = Applications Binary Interface

� We & gcc use standard MIPS ABI

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling C from asm

� Parameters:
�Registers a0 to a3
� For the first four integer/pointer args
� Other types: other rules

� Return value:
�Register v0
� Pointers & integers

� Calling method:
� “jal FUNCTIONNAME”

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling C from asm

� Name handling:
� Linker resolves all names
�C Function names = asm labels

� C:
�Function cannot be static
�Defined in any source file

� ASM:
�Name declared as ”.globl”

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling asm from C

� Asm will have to receive arguments
and returns values according to C
rules
�a0..a3 for parameters
�v0 for return value
� ra for return address

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Calling asm from C

� Declare function in C file:
� void asm_foo(int a);

� Declare global label in asm file:
� .globl asm_foo

� Call from C like any function:
� asm_foo(15)

� Return in asm using jr:
� jr ra

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

C and assembler

� Look in example files!

Starting the OS

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting the OS

� Before compiled C code can run,
some things must be setup:
� sp: stack pointer
�gp: global pointer

� This has to be done in assembly
� see asm.S for an example:
la gp, 0x80000000

la sp,init_stack-32

j kinit

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting the OS

� Also, exception handling has to be
initialized
�See asm.S for an example
� It copies basic handling code to the

right place in memory

� Note on MIPS:
�Exceptions are handled by jumping to a

certain address, where a jump to the
real handler is placed

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting the OS

� Where is the starting point?
�Not at 0x8020_0000!
�Depends on your binary
�Handled by Simics start script ☺
� Look at ”%pc” when Simics has loaded
� Trace the start of ”example_timer”

� In C: function called ”kinit()”
� See asm.S for how this is started

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Initial label

� Special label in asm: _start
�This is where program starts

� Can end up any place in memory
� Pointed to by metadata in binary

� “elf” format has an entry address

� Found and initialized by Simics

Programming Tasks

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Starting a Task

� A task is a C-function
�Parameters? – that is up to you!
�Return type? – that is up to you!

� Before starting the function:
�Setup SP
�Setup GP
�Setup parameters
�And then go there

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Programming a Task

� Function that never returns
� void task(void)
{
while(1)
{

...code...
}

}

� Quit task explicitly
� Or end if the ”infinite” loop is finite

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Function Pointer

� C way to point to code
� Slightly tricky syntax:

� RETURN_TYPE (*name)(PARAMS)

� Easy to use:
� void foo(void); // prototype for function

� void call(void(*func)(int), int param)
{

func(param); // calls function pointer
}

� call(foo,15) // “foo” becomes addr of foo

OS Questions

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Stacks

� Each task has its own stack
� Kernel will need its own stack

�Called using “syscall” = runs in
exception mode

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Recursion in C

� Recursion = function call
�Parameters & return value as usual

� No tail-recursion optimization
�A tail-recursive task will eat up stack as

it is recursively called
�NB: stack is fixed-size limited!
�Known bounds on all recursion!

In
fo

rm
at

io
n
 T

ec
h
n
o
lo

g
y

Department of Information Technology | www.it.uu.se

Timer Interrupt

� See example_timer.c ☺
�The MIPS processor has a built-in

counter register for timer interrupts

� Will need to do task switch
�To implement round-robin

	Low-Level C Programming
	Compile & Link
	One Binary
	Tasks & Single Binary
	Desktop vs Embedded
	Desktop vs Embedded
	Real-World Compilation
	Your Case
	No C Library
	Integrating C and Asm
	C and assembler
	Calling C from asm
	Calling C from asm
	Calling asm from C
	Calling asm from C
	C and assembler
	Starting the OS
	Starting the OS
	Starting the OS
	Starting the OS
	Initial label
	Programming Tasks
	Starting a Task
	Programming a Task
	Function Pointer
	OS Questions
	Stacks
	Recursion in C
	Timer Interrupt

