

Virtutech Simics

Jakob Engblom, PhD Business Development Manager Virtutech jakob@virtutech.com

Our Technology

Full system simulation

- Networking, backplanes
 - System-level from the beginning

Runs complete software stack

9/22/2005

Firmware, device drivers, OS, etc...

Very high performance

- Typically 100s of MIPS
- Multiple GIPS top benchmark

Our Technology: Full-System Simulation

Our Technology: Full-System Simulation

What You Just Saw

Simulation Levels

Abstraction

Complete Virtualization

Simics Modeling Level: Processor

- Instruction-set simulation (ISS)
- Complete and correct processor functionality
 - All instructions semantics bit-correct vs real machine
 - Supervisor-mode & user-mode
 - Runs the complete target instruction set
 - Including Altivec, SSE, 3dNow, VIS, etc. extensions
 - All accessible values represented
 - User-level registers
 - Supervisor-level registers
 - Model-specific registers, ASIs, debug register, etc.
- Memory-management unit
- Timing abstracted
 - Add details if required

Simics Modeling Level: Devices

- Hardware modeled as a set of devices
 - Memory map of machine (as seen by processor)
 - At the programming register level
- Model the program-visible behavior
 - Configuration registers
 - Control register
 - Data transmitted & received
- Transaction-level modeling
 - Reads, writes, DMA transfers, network packets
- ASICs & FPGAs
 - Model programming interface behavior
 - Not detailed implementation
- Detailed timing can be added if required

Simics Modeling: No Arbitrary Limits

- Boards/machines:
 - Single processor
 - Multiprocessor
 - Shared memory, local memories
- Backplane/interconnect:
 - Network (ATM, Ethernet, FibreChannel, ...)
 - Shared memory
- System level:
 - Multiple boards and machines
 - Heterogeneous processors, boards, machines
- Scalability:
 - Always allows 64-bit memory space
 - Simulation can be distributed

Real network of physical machines

Simics Network Timing

- Globally synchronized timing
 - Across processors
 - Across machines
 - Across the network

- Correct relative speed
 - 500 MHz processor will execute 10 times more instructions than a 50 MHz processor, in the same time
- Virtualized & controlled time
 - Insulated from external time
 - Time does not advance when simulation is stopped
 - Slower or faster than real world time
 - Global across the simulated network

Some Example Systems

Example Model Built with Simics: Telecom

- Telecomms Switch
 - ATM Backplane
 - 10+ different card types
 - Control cards
 - Compute cards
 - Line cards
 - Timer units
 - Multimedia cards
 - 20+ cards in a rack

- Multiple processor types
 - PowerOUICC II
 - PowerPC 750
 - PowerPC 405
 - TI C64 DSP
- Multiple network types
 - ATM, Ethernet, Serial

Example Simics Model: Single Board

- Aerospace board
 - Single processor
 - PowerPC 750gx
 - Integrated system unit
 - Memory controller
 - Ethernet network
 - Serial ports
 - PCI
 - On-board memory
 - FLASH
 - RAM
 - PCI/X connections
 - VxWorks, in-house OS
 - Multiple cards networked

9/22/2005

Some more Quick Demos

Booting a Machine

Opening a Checkpoint & Controlling Time

Simics in the CompSys Course

Virtual MIPS Computer

- Processor
- Memory
- Serial port

- Simpler than most real-world boards = easy to program
- Runs on Sparc workstations & PCs

Hardware of the Simulated Machine

- Counter
 - Built into the MIPS processor
 - Use for periodic interrupts
- Serial port
 - Use for text input and output
 - Interrupt-driven use mandatory
- Malta LCD
 - Output-only, use for fun features
- Memory
 - Used to store your code
 - 8 MB default, should be plenty

Helpful Simics Features

Handy Features of Simulation

Checkpointing

- Store current state; pick up and continue later
- Position workload once, use many times
- Distribute a system state to multiple developers

Determinism

- Same initial state gives same execution
- Repeat the same execution any number of times
- Investigate a problem time after time
- Add instrumentation and reexecute

Handy Features of Simulation

- Visibility (insight without intrusion)
 - All state can be observed
 - And used to set breakpoints
 - All events can be traced and logged
 - Including interrupts, status register changes, ...
 - Input and output visible
 - Log activity, trace accesses, break on IO
- Controllability
 - Any part of machine or state can be changed
 - Fault injection

Handy Features of Simulation

- Virtual time
 - Time is completely virtual
 - Machine does not run away
- Backwards debugging
 - Roll back execution to previous state
 - Step backwards in time
 - Reverse breakpoints
 - Set bookmarks in time

9/22/2005

Ultimate Debug Tool – Simics Hindsight

Going forwards: any debugger

 Back up and find out what happened: Hindsight

Backup... and go forward again

The main path

Backup... and try a different path

Summary: Simics Features not only Simulation

Summary: Simics Features not only Simulation

Debug Server with Simics

Demo of Last Year's OS

Booting a Machine

Features Used

Hindsight

LCD activity logging

Starting & stopping

IO trace, break

 Console scripting, programmed input

Exception trace, break

Control register trace, break

Getting Simics

Simics installation at Uppsala

- Used in Erik Hagersten's research group
- Runs on all machines at MIC
- Current: Simics 1.6, 2.0, 2.2 installed
- Simics 3.0 will be installed in time for the course
 - This is what you will be using
 - Includes Hindsight backwards debugger
 - Awaiting final release from Virtutech

Simics Academic Licensing

- Simics is offered to academia for free
- Academia gets the full Simics tool, all targets
- Personal licenses
 - Free, renewable yearly
 - Node-locked to a single computer
 - Obtain via <u>www.simics.net</u>
- Site licenses
 - Free
 - 10000 licenses baseline, floating
 - Much cheaper than buying specialized hardware labs

Thank You!