UPPSALA UNIVERSITY

Department of Information Technology

Division of Scientific Computing

Exam in Finite element methods II 2013-03-13

- Time: $8^{00} 13^{00}$
- Tools: Pocket calculator, Beta Mathematics Handbook
- Maximum number of points: 40
- All your answers must be very well argued. Calculations shall be demonstrated in detail. Solutions that are not complete can give points if they include some correct thoughts.
- Use the Cauchy-Schwarz inequality $(v, w)_V \leq ||v||_V ||w||_V$ for $v, w \in V$ (Hilbert space) and the Poincare-Friedrichs inequality $||v||_{L^2(\Omega)} \leq C||\nabla v||_{L^2(\Omega)}$ for $v \in H_0^1(\Omega)$ without proves.

Problem 1

Consider the Neumann problem on weak form: find $u \in V = H^1(\Omega)$ such that,

$$a(u, v) := (A \nabla u, \nabla v) + (Cu, v) = (F, v) := l(v), \quad \forall v \in V,$$

where $\Omega \subset \mathbf{R}^d$ is a bounded domain, $0 < \alpha \le A(x) \le \beta$, $0 < \gamma \le C(x) \le \delta$, with $\alpha, \beta, \gamma, \delta \in \mathbf{R}$, $F \in L^2(\Omega)$, and $(v, w) = \int_{\Omega} v \cdot w \, dx$.

- a) Use the Riesz Representation Theorem (RRT) to show existence of unique solution $u \in V$ to the weak form (you are not supposed to prove RRT but to show that the assumptions in the statement of the Theorem are fulfilled).
- b) Bound the solution u in the $H^{1}(\Omega)$ -norm $||v||_{H^{1}(\Omega)} = \left(||v||_{L^{2}(\Omega)}^{2} + ||\nabla v||_{L^{2}(\Omega)}^{2}\right)^{1/2}$ in terms of the data. [2p.]

[3p.]

[3p.]

- c) What assumption in the formulation of RRT does not hold in the case when there is no reaction term (i.e. C=0)? [2p.]
- d) Discretize the problem using the finite element method. Present the arising linear system of equations. What can be said about the solvability of the linear system in the case C=0? [3p.]

Problem 2

Let $\{\phi_i\}_{i=1}^3$ be the linear Lagrangian shape functions on the reference triangle K with nodes (0,0), (0,1), and (1,0).

- a) Express $\{\phi_i\}_{i=1}^3$ as functions of x and y. [2p.]
- b) Let $\{\psi_i\}_{i=1}^6$ be the quadratic Lagrangian shape functions on the reference triangle. Express $\{\psi_i\}_{i=1}^6$ in terms of the linear shape functions $\{\phi_i\}_{i=1}^3$. [3p.]
- c) Compute mass matrix entry $m_{22} = \int_K \psi_2 \psi_2 dx$, where ψ_2 is the shape function that is equal to one in (1,0).
- d) Let $f(x) = x^3$. Compute the nodal interpolant of f onto the space of quadratic polynomials on K as a linear combination of $\{\psi_i\}_{i=1}^6$. [2p.]

Problem 3

Let $\Omega \subset \mathbf{R}^d$ and consider the non-linear problem:

$$-\nabla \cdot A(u)\nabla u = f, \quad \text{in } \Omega,$$
 $u = 0, \quad \text{in } \partial\Omega,$

where A(u) is continuous in u and uniformly bounded $0 < \alpha \le A(\cdot) \le \beta$, and $f \in L^2(\Omega)$ independent of u.

- a) Construct a fixed point iteration by inserting the k:th iterate of u in A, i.e. $A(u_k)$, and solve for u_{k+1} . Write the arising fixed point iteration on weak form.
 - [2p.]
- b) Show that given $u_k \in H_0^1(\Omega)$ there is a unique solution $u_{k+1} \in H_0^1(\Omega)$ to the resulting weak form. You can use the Lax-Milgram Lemma or RRT without proof. Furthermore show that the $H^1(\Omega)$ norm of u_{k+1} can be bounded independent of u_k .
- [3p.]
- c) Schauder's fixed point Theorem states that if $u_k \in B_r = \{v \in H_0^1(\Omega) : ||v||_{H^1(\Omega)} \le r\}$ leads to $u_{k+1} \in B_r$ for some r > 0 (independent of u_k), there exists at least one weak solution to equation (1). Find such a value r.
- [2p.]
- d) Assume now that d=1. In one spatial dimension the Sobolev imbedding theorem gives $\|v\|_{L^{\infty}(\Omega)} \leq C\|v\|_{H^{1}(\Omega)}$ for all $v \in H^{1}(\Omega)$. Further assume $\|A(u) A(v)\|_{L^{\infty}(\Omega)} \leq \kappa \|u v\|_{L^{\infty}(\Omega)}$ for all $u, v \in H^{1}(\Omega)$. Show that if $\kappa > 0$ is sufficiently small, $\{u_{k}\}$ is a contracting sequence in $H^{1}(\Omega)$, i.e. $\|u_{k+1} u_{k}\|_{H^{1}(\Omega)} \leq \gamma \|u_{k} u_{k-1}\|_{H^{1}(\Omega)}$ for some $0 \leq \gamma < 1$, independent of k. This result shows existence and uniqueness of a weak solution to equation (1) (under stronger assumptions than in c).
 - Hint: $(uw, v) \le ||u||_{L^{\infty}(\Omega)} ||v||_{L^{2}(\Omega)} ||w||_{L^{2}(\Omega)}$ for all $v, w \in L^{2}(\Omega)$ and $u \in L^{\infty}(\Omega)$. [3p.]

Problem 4

Let $\Omega \subset \mathbf{R}^d$ and consider the transport problem:

$$-\epsilon \Delta u + b \cdot \nabla u + cu = f, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{in } \partial \Omega,$$
(2)

where $\epsilon > 0$, $b \in \{v \in L^{\infty}(\Omega) : \nabla \cdot v = 0\}$, $0 \le c \in L^{\infty}(\Omega)$ and $f \in L^{2}(\Omega)$.

- a) Derive the weak form of equation (2) with $V = H_0^1(\Omega)$.
- b) Show that $(b \cdot \nabla u, u) = 0$ if $\nabla \cdot b = 0$ and that the bilinear form (arising in the left hand side of the weak form) is coercive (you may use the full $H^1(\Omega)$ norm or the $H^1(\Omega)$ semi-norm, which are equivalent). How does the coercivity constant depend on ϵ ?
- [4p.]

[2p.]

c) Derive the Galerkin-Least Squares method for equation (2). Use continuous piecewise linear basis functions. [4p.]

Good luck! Axel Målgvist