Assignment 2

(due Tue, 29/11/2011)

Compiler Design I (Kompilatorteknik I) 2011

1 Context-free grammars

Give the definition of a context free grammar over the alphabet $\Sigma = \{a, b\}$ that describes all strings that have a different number of 'a's and 'b's.

2 Parsing and semantic actions

The following context-free grammar can parse all the lowercase roman numerals from 1-99. The terminal symbols are $\{c, l, x, v, i\}$ and the initial symbol is S. If you are unfamiliar with roman numerals, please have a look at http://en.wikipedia.org/wiki/Roman_numerals.

$$\begin{array}{cccc} S & \rightarrow & \mathbf{x} TU \mid \mathbf{1}X \mid X \\ T & \rightarrow & \mathbf{c} \mid \mathbf{1} \\ X & \rightarrow & \mathbf{x}X \mid U \\ U & \rightarrow & \mathbf{i}Y \mid \mathbf{v}I \mid I \\ Y & \rightarrow & \mathbf{x} \mid \mathbf{v} \\ I & \rightarrow & \mathbf{i}I \mid \epsilon \end{array}$$

- 1. Draw a parse tree for 42: "xlii"
- 2. Is this grammar ambiguous?
- 3. Write semantic actions for each of the 14 rules in the grammar (remember $X \to A|B$ is short for $X \to A$ and $X \to B$) to calculate the decimal value of the input string. You can associate a synthesized attribute val to each of the non-terminals to store their value. The final value should be returned in S-val.

3 LL(1) Parsers

In the following context-free grammar, the symbols 0, 1, 2 and 3 are terminals and S is the initial symbol.

- 1. Explain briefly why this grammar is not LL(1).
- 2. Convert this grammar to an equivalent that is LL(1).
- 3. For the grammar of the previous subtask, construct the complete LL(1) parsing table.
- 4. Show all the steps required to parse the input string: 1 1 0 2 0 3 0 1 0 3 3

LR(1) Parsers 4

In the following context-free grammar, the symbols (a, a) and a are terminals. and a is the initial symbol.

- $\begin{array}{cccc} (2) & S & \rightarrow & \mathbf{a} \\ (2) & S & \rightarrow & \mathbf{a} \\ (3) & L & \rightarrow & L , S \\ (4) & L & \rightarrow & S \end{array}$

Because , is a symbol of the language we are going to use | as a separator between the core of the LR(1) items and the lookahead symbols. Lookaheads with the same core can be separated as usual with /.

- 1. Calculate the closure of the LR(1) item [S \rightarrow (\cdot L) | \$].
- 2. Construct the full LR(1) DFA, showing all items in each state.
- 3. Construct the LR(1) parsing table using the DFA. For the reduce actions, please use the provided enumeration of the productions in the grammar.
- 4. Show all the steps required to parse the input string: ((a,a),a,a)

Instructions

There are two ways to submit this assignment:

- 1. Submit a physical copy of your answers in my mailbox (Aronis Stavros, 59) on the 4th floor of building 1, opposite the 'fika' room.
- 2. Send an email with an electronic copy of your answers to stavros.aronis@it.uu.se.

Good luck!