1DL321: Kompilatorteknik I
(Compiler Design 1)

Introduction to Programming
Language Design and to Compilation

Administrivia

« Lecturer:
- Kostis Sagonas (kostis@it.uu.se)

- Course home page:
http://www.it.uu.se/edu/course/homepage/komp/ht15

- Assistant:
- Stavros Aronis (stavros.aronis@it.uu.se)
- responsible for the lessons and the assignments

Course Structure

- Course has theoretical and practical aspects
* Need both in programming languages!

* Written examination = theory (4 credits)
+ first exam scheduled for 14th December 2015

- Four assignments = practice (1 credit)

- Electronic hand-in to the assistant before the
corresponding deadline

- You can submit one late assignment, if you need to,
but it cannot be later than the deadline of the
next assignment (for 1-3) or Dec. 20th (for 4th)

Course Literature

ENGINEERING (-I'ilfllﬂﬂ
COMPILER

Compilers

Principles, Technigues, & Tools

moedern

= caompiler
implementation
T — dima-mML

Academic Honesty

How are Languages Implemented?

- For assignments you are allowed to work in
pairs (but no threesomes/foursomes/...)

- Don't share your work with others
* e.g. post on public repositories

- Don't use work from non-cited sources
* including old assignments

- Two major strategies:
- Interpreters (older, less studied)
- Compilers (newer, much more studied)

* Interpreters run programs “as is"
- Little or no preprocessing

- Compilers do extensive preprocessing

Language Implementations

(Short) History of High-Level Languages

* Today, batch compilation systems dominate
- gcc, clang, ...

- Some languages are primarily interpreted
- Java bytecode compiler (javac)
- Scripting languages (perl, python, javascript, ruby)

- Some languages (e.g. Lisp) provide both
- Interpreter for development
- Compiler for production

- 1953 IBM develops the 701
» Till then, all programming is done in assembly

« Problem: Software costs exceeded hardware
costsl!

- John Backus: "Speedcoding”
- An interpreter

- Ran 10-20 times slower than
hand-written assembly

FORTRAN I FORTRAN I

+ 1954 IBM develops the 704 * The first compiler
- John Backus - Produced code almost as good as hand-written
- Idea: translate high-level code to assembly - Huge impact on computer science

- Many thought this impossible
* Had already failed in other projects

- 1954-7 FORTRAN I project
* By 1958, >507% of all software is in FORTRAN + Modern compilers preserve the outlines of

» Cut development time dramatically the FORTRAN I compiler
- (2 weeks — 2 hours)

* Led to an enormous body of theoretical work

The Structure of a Compiler First Step: Lexical Analysis
1. Lexical Analysis [P * Recognize words
2. Syntax Analysis o E—— - Smallest unit above letters
3. Semantic Analysis Semantic Analysis
4. IR Optimization IR Generaton This is a sentence.
5. Code Generation R opmEn
.. . Code Generation . No'l'e ‘l’he
6. Low-level Optimization S——

- Capital "T" (start of sentence symbol)
- Blank " " (word separator)

The first 3 phases can be understood by - Period "" (end of sentence symbol)

analogy to how humans comprehend natural
languages (e.g. Swedish or English).

More Lexical Analysis

* Lexical analysis is not trivial. Consider:
ist his ase nte nce

» Plus, programming languages are typically
more cryptic than English:
*p->F ++ = -_.12345e-5

And More Lexical Analysis

- Lexical analyzer divides program text into
"words" or “tokens"
iIT (Xx ==y) then z = 1; else z = 2;

* Units:
if, (,x,==,y,),then, z,=,1,;, else, z,=, 2, ;

Second Step: Syntax Analysis (Parsing)

+ Once words are identified, the next step is to
understand the sentence structure

* Parsing = Diagramming Sentences
- The diagram is a tree

Diagramming a Sentence (1)

This Iine is a Ionger sentence

artrcle noun verb artrcle adjectrve noun

noun phrase

noun phrase verb phrase

sentence

Diagramming a Sentence (2)

This line IS a longer sentence

L

article noun verb article adjective noun

N T~

subject object

sentence

Parsing Programs

* Parsing program expressions is the same
- Consider:

iIT (Xx ==y) then z = 1; else z = 2;
- Diagrammed:

X ==Yy z = 1 z = 2
— ~/— —\
relation assignTent assignment
\ \
predicate then-stmt else-stmt
e TE EEEe
if-then-else

Third Step: Semantic Analysis

+ Once the sentence structure is understood,
we can try fo understand its "meaning”
- But meaning is too hard for compilers

* Most compilers perform limited analysis to
catch inconsistencies

- Some optimizing compilers do more analysis
to improve the performance of the program

Semantic Analysis in English

-+ Example:
Jack said Jerry left his assignment at home.
What does “his" refer to? Jack or Jerry?

- Even worse:
Jack said Jack left his assignment at home?
How many Jacks are there?
Which one left the assignment?

Semantic Analysis in Programming Languages

* Programming languages
define strict rules to
avoid such ambiguities

{

- This C++ code prints 42; int Jack = 17;

More Semantic Analysis

- Compilers perform many semantic checks
besides variable bindings

* Example:
Arnold left her homework at home.

the inner definition is {
used Int Jack = 42; _
cout << Jack: * A "type mismatch” between her and Arnold;
3 we know they are different people
} - Presumably Arnold is male
Optimization Optimization Example

* No strong counterpart in English, but akin to
editing

- Automatically modify programs so that they
- Run faster

- avoid some source code redundancy
- exploit the underlying hardware more effectively

- Use less memory/cache/power

- Ingeneral, conserve some resource more
economically

X =Y * 0 isthesameas X = 0
NO!

Valid for integers, but not for floating point
humbers

Code Generation Intermediate Languages

* Produces assembly code (usually) * Many compilers perform translations between
successive intermediate forms

L - All but first and last are /intermediate languages
* A translation into another language internal to the compiler

- Analogous to human translation - Typically there is one IL

* Intermediate languages generally ordered in
descending level of abstraction
- Highest is source
- Lowest is assembly

Intermediate Languages (Cont.) Issues

* IL's are useful because lower levels expose - Compiling is almost this simple, but there are
features hidden by higher levels many pitfalls
- registers

- memory/frame layout - Example: How are erroneous programs

- efc. handled?

» But lower levels obscure high-level meaning . Language design has big impact on compiler

- Determines what is easy and hard to compile
- Course theme: many trade-offs in language design

Compilers Today

» The overall structure of almost every compiler
adheres to our outline

» The proportions have changed since FORTRAN
- Early:
* lexical analysis, parsing most complex, expensive
- Today:
+ lexical analysis and parsing are well-understood and cheap
+ semantic analysis and optimization dominate

+ focus on concurrency/parallelism and interactions with the
memory model of the underlying platform

+ optimization for code size and energy consumption

Current Trends in Compilation

+ Compilation for speed is less interesting.
However, there are exceptions:
- scientific programs
- advanced processors (Digital Signal Processors,
advanced speculative architectures, GPUs)

* Ideas from compilation used for improving
code reliability:

memory safety

detecting data races

security properties

Programming Language Economics

* Programming languages are designed to fill a void
- enable a previously difficult/impossible application
- orthogonal to language design quality (almost)

* Programming training is the dominant cost
- Languages with a big user base are replaced rarely
- Popular languages become ossified
- But it is easy to start in a new niche...

Why so many Programming Languages?

- Application domains have distinctive (and
sometimes conflicting) needs

- Examples:

- Scientific computing. High performance
Business: report generation
Artificial intelligence. symbolic computation
Systems programming. efficient low-level access
Web programming. scripts that run everywhere
Multicores: concurrency and parallelism
- Other special purpose languages...

Topic: Language Design

Language Evaluation Criteria

* No universally accepted metrics for design
- "A good language is one people use”

- NO'!
- Is COBOL the best language?

* Good language design is hard

Characteristic Criteria
Readability Writeability Reliability

Simplicity YES YES YES
Data types YES YES YES
Syntax design ~ YES YES YES
Abstraction YES YES
Expressivity YES YES
Type checking YES
Exceptions YES

History of Ideas: Abstraction

History of Ideas: Types

- Abstraction = detached from concrete details
* Necessary for building software systems

« Modes of abstraction:

- Via languages/compilers

* higher-level code; few machine dependencies
- Via subroutines

+ abstract interface to behavior
- Via modules

+ export interfaces which hide implementation

- Via abstract data types
* bundle data with its operations

* Originally, languages had only few types
- FORTRAN: scalars, arrays
- LISP: no static type distinctions

* Readlization: types help
- provide code documentation
- allow the programmer to express abstraction
- allow the compiler to check among many frequent
errors and sometimes guarantee various forms of
safety
* More recently:
- experiments with various forms of parameterization
- best developed in functional languages

History of Ideas: Reuse

- Exploits common patterns in software
development

Goal: mass produced software components
Reuse is difficult

- Two popular approaches (combined in C++)
- Type parameterization (List(Int) & List(Double))
- Class and inheritance: C++ derived classes

Inheritance allows:

- specialization of existing abstractions
- extension, modification and information hiding

Current Trends

* Language design
- Many new special-purpose languages
- Popular languages to stay

- Compilers
- More needed and more complex

- Driven by increasing gap between
* new languages
* new architectures

- Venerable and healthy area

Why study Compiler Design?

* Increase your knowledge of common
programming constructs and their properties

* Improve your understanding of program
execution

* Increase your ability to learn new languages

-+ See many basic CS concepts at work

