Introduction to Lexical Analysis

Outline

• Informal sketch of lexical analysis
 - Identifies tokens in input string

• Issues in lexical analysis
 - Lookahead
 - Ambiguities

• Specifying lexical analyzers (lexers)
 - Regular expressions
 - Examples of regular expressions

Lexical Analysis

• What do we want to do? Example:
 if (i == j)
 then
 z = 0;
 else
 z = 1;
• The input is just a string of characters:
 if (i == j)\nthen\n tz = 0;\nelse\n tz = 1;
• Goal: Partition input string into substrings
 - where the substrings are tokens
 - and classify them according to their role

What’s a Token?

• A syntactic category
 - In English:
 noun, verb, adjective, ...
 - In a programming language:
 Identifier, Integer, Keyword, Whitespace, ...
Tokens

- Tokens correspond to sets of strings
 - these sets depend on the programming language

- **Identifier**: strings of letters or digits, starting with a letter
- **Integer**: a non-empty string of digits
- **Keyword**: "else" or "if" or "begin" or …
- **Whitespace**: a non-empty sequence of blanks, newlines, and tabs

What are Tokens Used for?

- Classify program substrings according to role

- Output of lexical analysis is a stream of tokens...

- which is input to the parser

- Parser relies on token distinctions
 - An identifier is treated differently than a keyword

Designing a Lexical Analyzer: Step 1

- Define a finite set of tokens
 - Tokens describe all items of interest
 - Choice of tokens depends on language, design of parser

- Recall

 if (i == j)\n then\n \t z = 0;\n \text{else}\n \t z = 1;

- Useful tokens for this expression:
 - Integer, Keyword, Relation, Identifier, Whitespace, (,), =, ;

Designing a Lexical Analyzer: Step 2

- Describe which strings belong to each token

- Recall:
 - **Identifier**: strings of letters or digits, starting with a letter
 - **Integer**: a non-empty string of digits
 - **Keyword**: "else" or "if" or "begin" or …
 - **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
Lexical Analyzer: Implementation

An implementation must do two things:

1. Recognize substrings corresponding to tokens
2. Return the value or lexeme of the token
 - The lexeme is the substring

Example

- Recall:
 \[
 \text{if (i == j)\then\tz = 0;}\ntelse\nt\tz = 1;
 \]
- Token-lexeme groupings:
 - Identifier: i, j, z
 - Keyword: if, then, else
 - Relation: ==
 - Integer: 0, 1
 - (,), =, ; single character of the same name

Why do Lexical Analysis?

- Dramatically simplify parsing
 - The lexer usually discards “uninteresting” tokens that don’t contribute to parsing
 - E.g. Whitespace, Comments
 - Converts data early
- Separate out logic to read source files
 - Potentially an issue on multiple platforms
 - Can optimize reading code independently of parser

True Crimes of Lexical Analysis

- Is it as easy as it sounds?
- Not quite!
- Look at some programming language history . . .
Lexical Analysis in FORTRAN

- FORTRAN rule: Whitespace is insignificant
 - E.g., `VAR1` is the same as `VA R1`

FORTRAN whitespace rule was motivated by inaccuracy of punch card operators

A terrible design! Example

- Consider
 - `DO 5 I = 1,25`
 - `DO 5 I = 1.25`

 - The first is `DO 5 I =1 , 25`
 - The second is `DO5! =1.25`

- Reading left-to-right, the lexical analyzer cannot tell if `DO5I` is a variable or a DO statement until after `,”` is reached

Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1. The goal is to partition the string
 - This is implemented by reading left-to-right, recognizing one token at a time
2. "Lookahead" may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues
 - `i` vs. `if`
 - `=` vs. `==`

Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

```
IF THEN THEN THEN = ELSE; ELSE ELSE = IF
```

can be difficult to determine how to label lexemes
More Modern True Crimes in Scanning

Nested template declarations in C++

```
vector<vector<int>> myVector
vector<vector<int>> myVector
(vector<vector<int>> myVector))
```

Review

- The goal of lexical analysis is to
 - Partition the input string into *lexemes* (the smallest program units that are individually meaningful)
 - Identify the token of each lexeme
- Left-to-right scan ⇒ lookahead sometimes required

Next

- We still need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 - Is *if* two variables *i* and *f*?
 - Is **==** two equal signs == ?

Regular Languages

- There are several formalisms for specifying tokens
 - *Regular languages* are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A *language* Λ over Σ is a set of strings of characters drawn from Σ.

(Σ is called the *alphabet* of Λ)

Examples of Languages

- Alphabet = English characters
- Language = English sentences
- Not every string on English characters is an English sentence
- Alphabet = ASCII
- Language = C programs
- Note: ASCII character set is different from English character set

Notation

- Languages are sets of strings
- Need some notation for specifying which sets of strings we want our language to contain
- The standard notation for regular languages is *regular expressions*

Atomic Regular Expressions

- Single character

 $c = \{"c"\}$
- Epsilon

 $\varepsilon = \{"\}$
Compound Regular Expressions

- Union
 \[A + B = \{ s \mid s \in A \text{ or } s \in B \} \]
- Concatenation
 \[AB = \{ ab \mid a \in A \text{ and } b \in B \} \]
- Iteration
 \[A^* = \bigcup_{i \geq 0} A^i \text{ where } A^i = A \ldots i \text{ times } \ldots A \]

Regular Expressions

- Def. The regular expressions over \(\Sigma \) are the smallest set of expressions including
 - \(\varepsilon \)
 - 'c' where \(c \in \Sigma \)
 - \(A + B \) where \(A, B \) are rexp over \(\Sigma \)
 - \(AB \) where \(A \) are rexp over \(\Sigma \)

Syntax vs. Semantics

- To be careful, we should distinguish syntax and semantics (meaning) of regular expressions

 \[
 \begin{align*}
 L(\varepsilon) & = \{ "" \} \\
 L('c') & = \{ "c" \} \\
 L(A + B) & = L(A) \cup L(B) \\
 L(AB) & = \{ ab \mid a \in L(A) \text{ and } b \in L(B) \} \\
 L(A^*) & = \bigcup_{i \geq 0} L(A^i)
 \end{align*}
 \]

Example: Keyword

- Keyword: "else" or "if" or "begin" or ...

 'else' + 'if' + 'begin' + ⋯

 Note: 'else' abbreviates 'e"l"s"e'
Example: Integers

Integer: a non-empty string of digits

digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
integer = digit digit*

Abbreviation: $A^+ = AA^*$

Example: Identifier

Identifier: strings of letters or digits, starting with a letter

letter = 'A' +...+'Z'+'a'+...'+z'
identifier = letter (letter + digit)*

Is (letter* + digit*) the same?

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

(' ' + '
' + '	')+

Example 1: Phone Numbers

• Regular expressions are all around you!
• Consider +46(0)18-471-1056

Σ = digits ∪ {+,-,(),}
country = digit digit
city = digit digit
univ = digit digit
extension = digit digit digit
t
phone_num = ‘+’country(‘0’)’city’–’univ’–’extension
Example 2: Email Addresses

- Consider kostis@it.uu.se

\[\sum = \text{letters } \cup \{.,@\} \]

name = letter+

address = name '@' name '.'

Summary

- Regular expressions describe many useful languages
- Regular languages are a language specification
 - We still need an implementation

- Next: Given a string \(s \) and a regular expression \(R \), is \(s \in L(R) \)?
- A yes/no answer is not enough!
- Instead: partition the input into tokens
- We will adapt regular expressions to this goal

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 - RegExp \(\Rightarrow \) NFA \(\Rightarrow \) DFA \(\Rightarrow \) Tables
Notation

- For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

 • Union: \(A + B \equiv A | B \)

 • Option: \(A + \varepsilon \equiv A? \)

 • Range: ‘a’+’b’+…+’z’ \(\equiv [a-z] \)

 • Excluded range: complement of \([a-z]\) \(\equiv[^a-z] \)

Regular Expressions ⇒ Lexical Specifications

3. Construct \(R \), a regular expression matching all lexemes for all tokens

\[
R = \text{Keyword} + \text{Identifier} + \text{Integer} + \ldots \\
= R_1 + R_2 + R_3 + \ldots
\]

Facts: If \(s \in L(R) \) then \(s \) is a lexeme
 - Furthermore \(s \in L(R_i) \) for some “\(i \)”
 - This “\(i \)” determines the token that is reported

4. Let input be \(x_1...x_n \)
 - \((x_1 ... x_n \) are characters in the language alphabet)
 - For \(1 \leq i \leq n \) check
 \[
x_1...x_i \in L(R) \ ?
\]

5. It must be that
 \[
x_1...x_i \in L(R_j) \text{ for some } i \text{ and } j
\]
 (if there is a choice, pick a smallest such \(j \))

6. Report token \(j \), remove \(x_1...x_i \) from input and go to step 4
How to Handle Spaces and Comments?

1. We could create a token Whitespace

 Whitespace = (' ' + '
' + '	')*

 • We could also add comments in there
 • An input " \t\n 555 " is transformed into
 Whitespace Integer Whitespace

2. Lexical analyzer skips spaces (preferred)
 • Modify step 5 from before as follows:
 It must be that $x_k \ldots x_i \in L(R_j)$ for some j such that $x_1 \ldots x_{k-1} \in L(Whitespace)$
 • Parser is not bothered with spaces

Ambiguities (1)

• There are ambiguities in the algorithm
• How much input is used? What if

 • $x_1\ldots x_i \in L(R)$ and also $x_1\ldots x_K \in L(R)$
 • The “maximal munch” rule: Pick the longest possible substring that matches R

Ambiguities (2)

• Which token is used? What if

 • $x_1\ldots x_i \in L(R_j)$ and also $x_1\ldots x_i \in L(R_k)$
 • Rule: use rule listed first (j if $j < k$)

• Example:

 - $R_1 =$ Keyword and $R_2 =$ Identifier
 - “if” matches both
 - Treats “if” as a keyword not an identifier

Error Handling

• What if

 No rule matches a prefix of input?
• Problem: Can’t just get stuck …
• Solution:

 - Write a rule matching all “bad” strings
 - Put it last
• Lexical analysis tools allow the writing of:

 $R = R_1 + \ldots + R_n + Error$

 - Token Error matches if nothing else matches
Summary

• Regular expressions provide a concise notation for string patterns
• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
• Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)

Regular Languages & Finite Automata

Basic formal language theory result:
Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:
• Regular expressions for specification
• Finite automata for implementation
 (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a recognizer for the strings of a regular language

A finite automaton consists of
 - A finite input alphabet \(\Sigma \)
 - A set of states \(S \)
 - A start state \(n \)
 - A set of accepting states \(F \subseteq S \)
 - A set of transitions \(\text{state} \rightarrow \text{input} \text{state} \)

Finite Automata

• Transition \(s_1 \rightarrow^a s_2 \)
• Is read
 In state \(s_1 \) on input “a” go to state \(s_2 \)
• If end of input
 - If in accepting state \(\Rightarrow \) accept
• Otherwise
 - If no transition possible \(\Rightarrow \) reject
Finite Automata State Graphs

• A state
• The start state
• An accepting state
• A transition

A Simple Example

• A finite automaton that accepts only “1”

Another Simple Example

• A finite automaton accepting any number of 1’s followed by a single 0
• Alphabet: {0,1}

And Another Example

• Alphabet {0,1}
• What language does this recognize?
And Another Example

• Alphabet still \{ 0, 1 \}

• The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state

Epsilon Moves

• Another kind of transition: \(\varepsilon \)-moves

• Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No \(\varepsilon \)-moves

• Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have \(\varepsilon \)-moves

• Finite automata have finite memory
 - Enough to only encode the current state

Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make \(\varepsilon \)-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

- An NFA can get into multiple states

- Input: 1 0 1
- Rule: NFA accepts an input if it can get in a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

- DFA can be exponentially larger than NFA (contrary to what is shown in the above example)

Regular Expressions to Finite Automata

- High-level sketch
Regular Expressions to NFA (1)

• For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

 ![Diagram of NFA for regular expression M]

 i.e. our automata have one start and one accepting state

• For ε

 ![Diagram of NFA for ε]

• For input a

 ![Diagram of NFA for input a]

Regular Expressions to NFA (2)

• For AB

 ![Diagram of NFA for AB]

• For A + B

 ![Diagram of NFA for A + B]

Regular Expressions to NFA (3)

• For A*

 ![Diagram of NFA for A*]

Example of Regular Expression → NFA conversion

• Consider the regular expression

 (1+0)*1

• The NFA is

 ![Diagram of NFA for (1+0)*1]
NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 = a non-empty subset of states of the NFA
- Start state
 = the set of NFA states reachable through \(\varepsilon\)-moves from NFA start state
- Add a transition \(S \rightarrow a S'\) to DFA iff
 - \(S'\) is the set of NFA states reachable from any state in \(S\) after seeing the input \(a\)
 - considering \(\varepsilon\)-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are \(N\) states, the NFA must be in some subset of those \(N\) states
- How many subsets are there?
 - \(2^N - 1 = \) finitely many

NFA to DFA Example

[Diagram of NFA and DFA example]

Implementation

- A DFA can be implemented by a 2D table \(T\)
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition \(S_i \rightarrow a S_k\) define \(T[i,a] = k\)

- DFA “execution”
 - If in state \(S_i\) and input \(a\), read \(T[i,a] = k\) and skip to state \(S_k\)
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>

Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of tools such as `lex`, `ML-Lex`, `flex` or `jflex`.
- But, DFAs can be huge.
- In practice, `flex`-like tools trade off speed for space in the choice of NFA and DFA representations.

Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.
- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.