
Introduction to Lexical

Analysis

2

Outline

•

Informal sketch of lexical analysis
–

Identifies tokens in input string

•

Issues in lexical analysis
–

Lookahead

–

Ambiguities

•

Specifying lexical analyzers (lexers)
–

Regular expressions

–

Examples of regular expressions

3

Lexical Analysis

•

What do we want to do? Example:
if (i == j)
then

z = 0;
else

z = 1;

•

The input is just a string of characters:
if (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Goal: Partition input string into substrings
–

where the substrings are tokens

–

and classify them according to their role

4

What’s a Token?

•

A syntactic category
–

In English:

noun, verb, adjective, …

–

In a programming language:
Identifier, Integer, Keyword, Whitespace, …

5

Tokens

•

Tokens correspond to sets of strings
–

these sets depend on the programming language

•

Identifier: strings of letters or digits,
starting with a letter

•

Integer: a non-empty string of digits
•

Keyword: “else” or “if” or “begin” or …

•

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

6

What are Tokens Used for?

•

Classify program substrings according to role

•

Output of lexical analysis is a stream of
tokens . . .

•

. . . which is input to the parser

•

Parser relies on token distinctions
–

An identifier is treated differently than a keyword

7

Designing a Lexical Analyzer: Step 1

•

Define a finite set of tokens
–

Tokens describe all items of interest

–

Choice of tokens depends on language, design of
parser

•

Recall
if (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace,

(,), =, ;

8

Designing a Lexical Analyzer: Step 2

•

Describe which strings belong to each token

•

Recall:
–

Identifier: strings of letters or digits, starting
with a letter

–

Integer: a non-empty string of digits
–

Keyword: “else” or “if” or “begin” or …

–

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

9

Lexical Analyzer: Implementation

An implementation must do two things:

1.

Recognize substrings corresponding to tokens

2.

Return the value or lexeme

of the token
–

The lexeme is the substring

10

Example

•

Recall:
if (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Token-lexeme groupings:
–

Identifier: i, j, z

–

Keyword: if, then, else
–

Relation: ==

–

Integer: 0, 1
–

(,), =, ;

single character of the same name

11

Why do Lexical Analysis?

•

Dramatically simplify parsing
–

The lexer usually discards “uninteresting”

tokens

that don’t contribute to parsing
•

E.g. Whitespace, Comments

–

Converts data early
•

Separate out logic to read source files
–

Potentially an issue on multiple platforms

–

Can optimize reading code independently of parser

12

True Crimes of Lexical Analysis

•

Is it as easy as it sounds?

•

Not quite!

•

Look at some programming language history . . .

13

Lexical Analysis in FORTRAN

•

FORTRAN rule: Whitespace is insignificant

•

E.g., VAR1 is the same as VA R1

FORTRAN whitespace rule was motivated by inaccuracy
of punch card operators

14

A terrible design! Example

•

Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

•

The first is DO 5 I = 1 , 25
•

The second is DO5I = 1.25

•

Reading left-to-right, the lexical analyzer
cannot tell if DO5I is a variable or a DO
statement until after “,”

is reached

15

Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1.

The goal is to partition the string
–

This is implemented by reading left-to-right,
recognizing one token at a time

2.

“Lookahead”

may be required to decide where one
token ends and the next token begins
–

Even our simple example has lookahead issues

i vs. if
= vs. ==

16

Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes

17

More Modern True Crimes in Scanning

Nested template declarations in C++

vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))

18

Review

•

The goal of lexical analysis is to
–

Partition the input string into lexemes (the smallest
program units that are individually meaningful)

–

Identify the token of each lexeme

•

Left-to-right scan ⇒

lookahead sometimes
required

19

Next

•

We still need
–

A way to describe the lexemes of each token

–

A way to resolve ambiguities
•

Is if two variables i and f?

•

Is == two equal signs = =?

20

Regular Languages

•

There are several formalisms for specifying
tokens

•

Regular languages are the most popular
–

Simple and useful theory

–

Easy to understand
–

Efficient implementations

21

Languages

Def. Let Σ

be a set of characters. A language Λ
 over Σ

is a set of strings of characters drawn

from Σ
(Σ

is called the alphabet of Λ)

22

Examples of Languages

•

Alphabet = English
characters

•

Language = English
sentences

•

Not every string on
English characters is an
English sentence

•

Alphabet = ASCII

•

Language = C programs

•

Note: ASCII character
set is different from
English character set

23

Notation

•

Languages are sets of strings

•

Need some notation for specifying which sets
of strings we want our language to contain

•

The standard notation for regular languages is
regular expressions

24

Atomic Regular Expressions

•

Single character

•

Epsilon

{ }' ' " "c c=

{ }""ε =

25

Compound Regular Expressions

•

Union

•

Concatenation

•

Iteration

{ }| or A B s s A s B+ = ∈ ∈

{ }| and AB ab a A b B= ∈ ∈

*
0

 where ... times ...i i
i

A A A A i A
≥

= =U

26

Regular Expressions

•

Def.

The regular expressions over Σ

are the
smallest set of expressions including

*

' ' where
where , are rexp over
" " "
where is a rexp over

c c
A B A B
AB
A A

ε
∈∑

+ ∑

∑

27

Syntax vs. Semantics

•

To be careful, we should distinguish syntax
and semantics (meaning)

of regular expressions

{ }

*
0

() ""
(' ') {" "}
() () ()
() { | () and ()}
() ()i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= U

28

Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' + L

Note: abbrev'else' 'e''l''siates ''e'

29

Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation: A AA+ =

30

Example: Identifier

Identifier: strings of letters or digits,
starting with a letter

*

letter = 'A' 'Z' 'a' 'z'
identifier = letter (letter digit)

+ + + + +
+

K K

* *(letter + diIs the sgit) ame?

31

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

()' ' + '\n' + '\t' +

32

Example 1: Phone Numbers

•

Regular expressions are all around you!
•

Consider +46(0)18-471-1056

Σ

= digits ∪

{+,−,(,)}
country = digit digit
city = digit digit
univ = digit digit digit
extension = digit digit digit digit
phone_num = ‘+’country’(’0‘)’city’−’univ’−’extension

33

Example 2: Email Addresses

•

Consider kostis@it.uu.se

{ }
+name = letter

address = name '@' name '.'

letters

name '.

'

.,@

name

∑ = ∪

34

Summary

•

Regular expressions describe many useful
languages

•

Regular languages are a language specification
–

We still need an implementation

•

Next: Given a string s and a regular
expression R, is

•

A yes/no answer is not enough!
•

Instead: partition the input into tokens

•

We will adapt regular expressions to this goal

()?s L R∈

Implementation of Lexical Analysis

36

Outline

•

Specifying lexical structure using regular
expressions

•

Finite automata
–

Deterministic Finite Automata (DFAs)

–

Non-deterministic Finite Automata (NFAs)

•

Implementation of regular expressions
RegExp

⇒ NFA ⇒

DFA ⇒

Tables

37

Notation

•

For convenience, we will use a variation (we will
allow user-defined abbreviations)

in regular

expression notation

•

Union: A + B ≡

A | B
•

Option: A + ε ≡ A?

•

Range: ‘a’+’b’+…+’z’

≡

[a-z]
•

Excluded range:

complement of [a-z] ≡

[^a-z]

38

Regular Expressions ⇒

Lexical Specifications

1.

Select a set of tokens
•

Integer, Keyword, Identifier, LeftPar, ...

2.

Write a regular expression (pattern) for the
lexemes of each token
•

Integer

= digit +

•

Keyword

= ‘if’

+

‘else’

+

…
•

Identifier

= letter (letter + digit)*

•

LeftPar

=

‘(‘
•

…

39

Regular Expressions ⇒

Lexical Specifications

3. Construct R, a regular expression matching all
lexemes for all tokens

R = Keyword

+ Identifier

+ Integer

+ …
= R1

+ R2

+ R3

+ …

Facts: If s ∈

L(R)

then s

is a lexeme
–

Furthermore s ∈

L(Ri

)

for some “i”
–

This “i”

determines the token that is reported

40

Regular Expressions ⇒

Lexical Specifications

4.

Let input be x1

…xn
•

(x1

... xn

are characters in the language alphabet)
•

For 1 ≤

i ≤

n

check

x1

…xi

∈

L(R)

?

5.

It must be that
x1

…xi

∈

L(Rj

)

for some i

and j
(if there is a choice, pick a smallest such j)

6.

Report token j, remove x1…xi

from input and
go to step 4

41

How to Handle Spaces and Comments?

1.

We could create a token Whitespace
Whitespace

= (‘

’

+ ‘\n’

+ ‘\t’)+

•

We could also add comments in there
•

An input " \t\n 555 "

is transformed into

Whitespace Integer Whitespace
2.

Lexical analyzer skips spaces (preferred)
•

Modify step 5 from before as follows:
It must be that xk

... xi

∈

L(Rj

)

for some j

such
that x1

... xk-1

∈

L(Whitespace)
•

Parser is not bothered with spaces

42

Ambiguities (1)

•

There are ambiguities in the algorithm

•

How much input is used? What if
•

x1

…xi

∈

L(R)

and also x1

…xK

∈

L(R)

•

The “maximal munch”

rule: Pick the longest
possible substring that matches R

43

Ambiguities (2)

•

Which token is used? What if
•

x1

…xi

∈

L(Rj

)

and also x1

…xi

∈

L(Rk

)

•

Rule: use rule listed first (j

if j < k)

•

Example:
–

R1

= Keyword

and R2

= Identifier
–

“if”

matches both

–

Treats “if”

as a keyword not an identifier

44

Error Handling

•

What if
No rule matches a prefix of input ?

•

Problem: Can’t just get stuck …
•

Solution:
–

Write a rule matching all “bad”

strings

–

Put it last
•

Lexical analysis tools allow the writing of:
R = R1

+ ... + Rn

+ Error
–

Token Error

matches if nothing else matches

45

Summary

•

Regular expressions provide a concise notation
for string patterns

•

Use in lexical analysis requires small extensions
–

To resolve ambiguities

–

To handle errors
•

Good algorithms known (next)
–

Require only single pass over the input

–

Few operations per character (table lookup)

46

Regular Languages & Finite Automata

Basic formal language theory result:
Regular expressions and finite automata both
define the class of regular languages.

Thus, we are going to use:
•

Regular expressions for specification

•

Finite automata for implementation
(automatic generation of lexical analyzers)

47

Finite Automata

A finite automaton is a recognizer for the
strings of a regular language

A finite automaton consists of
–

A finite input alphabet Σ

–

A set of states S
–

A start state n

–

A set of accepting states F ⊆

S
–

A set of transitions state →input

state

48

Finite Automata

•

Transition
s1

→a

s2
•

Is read

In state s1

on input “a”

go to state s2

•

If end of input
–

If in accepting state ⇒ accept

•

Otherwise
–

If no transition possible ⇒ reject

49

Finite Automata State Graphs

•

A state

•

The start state

•

An accepting state

•

A transition
a

50

A Simple Example

•

A finite automaton that accepts only “1”

•

A finite automaton accepts a string if we can
follow transitions labeled with the characters
in the string from the start to some accepting
state

1

51

Another Simple Example

•

A finite automaton accepting any number of 1’s
followed by a single 0

•

Alphabet: {0,1}

0

1

52

And Another Example

•

Alphabet {0,1}
•

What language does this recognize?

0

1

0

1

0

1

53

And Another Example

•

Alphabet still { 0, 1 }

•

The operation of the automaton is not
completely defined by the input
–

On input “11”

the automaton could be in either state

1

1

54

Epsilon Moves

•

Another kind of transition: ε-moves

ε

•

Machine can move from state A to state B
without reading input

A B

55

Deterministic and Non-Deterministic Automata

•

Deterministic Finite Automata (DFA)
–

One transition per input per state

–

No ε-moves
•

Non-deterministic Finite Automata (NFA)
–

Can have multiple transitions for one input in a
given state

–

Can have ε-moves
•

Finite automata have finite memory
–

Enough to only encode the current state

56

Execution of Finite Automata

•

A DFA can take only one path through the
state graph
–

Completely determined by input

•

NFAs

can choose
–

Whether to make ε-moves

–

Which of multiple transitions for a single input to
take

57

Acceptance of NFAs

•

An NFA can get into multiple states

•

Input:

0

1

1

0

1 0 1

•

Rule: NFA accepts an input if it can

get in a
final state

58

NFA vs. DFA (1)

•

NFAs

and DFAs

recognize the same set of
languages (regular languages)

•

DFAs

are easier to implement
–

There are no choices to consider

59

NFA vs. DFA (2)

•

For a given language the NFA can be simpler
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

•

DFA can be exponentially larger than NFA
(contrary to what is shown in the above example)

60

Regular Expressions to Finite Automata

•

High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

61

Regular Expressions to NFA (1)

•

For each kind of reg. expr, define an NFA
–

Notation: NFA for regular expression M

i.e. our automata have one

start and one

accepting state

M

•

For ε
ε

•

For input a a

62

Regular Expressions to NFA (2)

•

For AB

A Bε

•

For A + B

A

B

ε
ε

ε

ε

63

Regular Expressions to NFA (3)

•

For A*

Aε

ε

ε

64

Example of Regular Expression →

NFA conversion

•

Consider the regular expression
(1+0)*1

•

The NFA is

ε

1C E
0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J

65

NFA to DFA. The Trick

•

Simulate the NFA
•

Each state of DFA
= a non-empty subset of states of the NFA

•

Start state
= the set of NFA states reachable through ε-moves

from NFA start state
•

Add a transition S →a S’

to DFA iff

–

S’

is the set of NFA states reachable from any
 state in S after seeing the input a

•

considering ε-moves as well

66

NFA to DFA. Remark

•

An NFA may be in many states at any time

•

How many different states ?

•

If there are N states, the NFA must be in
some subset of those N states

•

How many subsets are there?
–

2N

-

1 = finitely many

67

NFA to DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

68

Implementation

•

A DFA can be implemented by a 2D table T
–

One dimension is “states”

–

Other dimension is “input symbols”
–

For every transition Si

→a Sk

define T[i,a] = k

•

DFA “execution”
–

If in state Si

and input a, read T[i,a] = k and skip to
state Sk

–

Very efficient

69

Table Implementation of a DFA

S

T

U

0

1

0

10 1

0 1
S T U
T T U
U T U

70

Implementation (Cont.)

•

NFA → DFA conversion is at the heart of
tools such as lex,

ML-Lex,

flex

or jlex

•

But, DFAs

can be huge

•

In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations

71

Theory vs. Practice

Two differences:

•

DFAs recognize lexemes. A lexer

must return
a type of acceptance (token type) rather than
simply an accept/reject indication.

•

DFAs

consume the complete string and accept
or reject it. A lexer

must find the end of the

lexeme in the input stream and then find the
next one, etc.

