
Introduction to Lexical
 

Analysis
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Outline

•
 

Informal sketch of lexical analysis
–

 
Identifies tokens in input string

•
 

Issues in lexical analysis
–

 
Lookahead

–
 

Ambiguities

•
 

Specifying lexical analyzers (lexers)
–

 
Regular expressions

–
 

Examples of regular expressions
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Lexical Analysis

•
 

What do we want to do?  Example:
if (i == j)
then

z = 0;
else

z = 1;

•
 

The input is just a string of characters:
if (i == j)\nthen\n\tz

 
= 0;\n\telse\n\t\tz = 1;

•
 

Goal: Partition input string into substrings
–

 
where the substrings are tokens

–
 

and classify them according to their role
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What’s a Token?

•
 

A syntactic category
–

 
In English:

noun, verb, adjective, …

–
 

In a programming language:
Identifier, Integer, Keyword, Whitespace, …
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Tokens

•
 

Tokens correspond to sets of strings
–

 
these sets depend on the programming language

•
 

Identifier: strings of letters or digits, 
starting with a letter

•
 

Integer: a non-empty string of digits
•

 
Keyword: “else” or “if” or “begin” or …

•
 

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs
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What are Tokens Used for?

•
 

Classify program substrings according to role

•
 

Output of lexical analysis is a stream of 
tokens . . .

•
 

. . . which is input to the parser

•
 

Parser relies on token distinctions
–

 
An identifier is treated differently than a keyword
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Designing a Lexical Analyzer: Step 1

•
 

Define a finite set of tokens
–

 
Tokens describe all items of interest

–
 

Choice of tokens depends on language, design of 
parser

•
 

Recall
if (i == j)\nthen\n\tz

 
= 0;\n\telse\n\t\tz = 1;

•
 

Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace, 

(, ), =, ;
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Designing a Lexical Analyzer: Step 2

•
 

Describe which strings belong to each token

•
 

Recall:
–

 
Identifier: strings of letters or digits, starting 
with a letter

–
 

Integer: a non-empty string of digits
–

 
Keyword: “else” or “if” or “begin” or …

–
 

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs
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Lexical Analyzer: Implementation

An implementation must do two things:

1.
 

Recognize substrings corresponding to tokens

2.
 

Return the value or lexeme
 

of the token
–

 
The lexeme is the substring
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Example

•
 

Recall:
if (i == j)\nthen\n\tz

 
= 0;\n\telse\n\t\tz = 1;

•
 

Token-lexeme groupings:
–

 
Identifier: i, j, z

–
 

Keyword: if, then, else
–

 
Relation: ==

–
 

Integer: 0, 1
–

 
(, ), =, ;

 
single character of the same name
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Why do Lexical Analysis?

•
 

Dramatically simplify parsing
–

 
The lexer usually discards “uninteresting”

 
tokens 

that don’t contribute to parsing
•

 
E.g. Whitespace, Comments

–
 

Converts data early
•

 
Separate out logic to read source files
–

 
Potentially an issue on multiple platforms

–
 

Can optimize reading code independently of parser

12

True Crimes of Lexical Analysis

•
 

Is it as easy as it sounds?

•
 

Not quite!

•
 

Look at some programming language history . . .
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Lexical Analysis in FORTRAN

•
 

FORTRAN rule: Whitespace is insignificant

•
 

E.g., VAR1 is the same as VA  R1

FORTRAN whitespace rule was motivated by inaccuracy 
of punch card operators
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A terrible design! Example

•
 

Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

•
 

The first is DO  5  I = 1  ,  25
•

 
The second is DO5I = 1.25

•
 

Reading left-to-right, the lexical analyzer 
cannot tell if DO5I is a variable or a DO 
statement until after “,”

 
is reached
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Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1.

 
The goal is to partition the string
–

 
This is implemented by reading left-to-right, 
recognizing one token at a time

2.
 

“Lookahead”
 

may be required to decide where one 
token ends and the next token begins
–

 
Even our simple example has lookahead issues

i vs. if
= vs. ==
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Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes
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More Modern True Crimes in Scanning

Nested template declarations in C++

vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))

18

Review

•
 

The goal of lexical analysis is to
–

 
Partition the input string into lexemes (the smallest 
program units that are individually meaningful)

–
 

Identify the token of each lexeme

•
 

Left-to-right scan ⇒
 

lookahead sometimes 
required
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Next

•
 

We still need
–

 
A way to describe the lexemes of each token

–
 

A way to resolve ambiguities
•

 
Is if two variables i and f?

•
 

Is == two equal signs =  =?
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Regular Languages

•
 

There are several formalisms for specifying 
tokens

•
 

Regular languages are the most popular
–

 
Simple and useful theory

–
 

Easy to understand
–

 
Efficient implementations
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Languages

Def. Let Σ
 

be a set of characters.  A language Λ
 over Σ

 
is a set of strings of characters drawn 

from Σ
(Σ

 
is called the alphabet of Λ)
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Examples of Languages

•
 

Alphabet = English 
characters

•
 

Language = English 
sentences

•
 

Not every string on 
English characters is an 
English sentence

•
 

Alphabet = ASCII

•
 

Language = C programs

•
 

Note: ASCII character 
set is different from 
English character set
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Notation

•
 

Languages are sets of strings

•
 

Need some notation for specifying which sets 
of strings we want our language to contain

•
 

The standard notation for regular languages is 
regular expressions
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Atomic Regular Expressions

•
 

Single character

•
 

Epsilon

{ }' ' " "c c=

{ }""ε =
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Compound Regular Expressions

•
 

Union

•
 

Concatenation

•
 

Iteration

{ }|  or A B s s A s B+ = ∈ ∈

{ }|  and AB ab a A b B= ∈ ∈

*
0

  where  ...  times ...i i
i

A A A A i A
≥

= =U
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Regular Expressions

•
 

Def.
 

The regular expressions over Σ
 

are the 
smallest set of expressions including

*

' ' where 
where ,  are rexp over 
"                 "                    "
where  is a rexp over 

c c
A B A B
AB
A A

ε
∈∑

+ ∑

∑
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Syntax vs. Semantics

•
 

To be careful, we should distinguish syntax 
and semantics (meaning)

 
of regular expressions

{ }

*
0

( ) ""
(' ') {" "}
( ) ( ) ( )
( ) { | ( ) and ( )}
( ) ( )i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= U
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Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' + L

Note:  abbrev'else'  'e''l''siates ''e'
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Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation:    A AA+ =
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Example: Identifier

Identifier: strings of letters or digits, 
starting with a letter

*

letter = 'A' 'Z' 'a' 'z'
identifier = letter (letter  digit)

+ + + + +
+

K K

* *(letter  + diIs    the sgit ) ame?
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Example: Whitespace

Whitespace: a non-empty sequence of blanks, 
newlines, and tabs

( )'  ' + '\n' + '\t' +
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Example 1: Phone Numbers

•
 

Regular expressions are all around you!
•

 
Consider +46(0)18-471-1056

Σ
 

= digits ∪
 

{+,−,(,)}
country       = digit  digit
city             = digit  digit
univ = digit  digit  digit
extension    = digit  digit  digit  digit
phone_num = ‘+’country’(’0‘)’city’−’univ’−’extension
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Example 2: Email Addresses

•
 

Consider kostis@it.uu.se

{ }
+name = letter

address = name '@' name '.' 

letters

name '.

 

'

.,@

name

∑ = ∪
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Summary

•
 

Regular expressions describe many useful 
languages

•
 

Regular languages are a language specification
–

 
We still need an implementation

•
 

Next: Given a string s and a regular 
expression R, is

•
 

A yes/no answer is not enough!
•

 
Instead: partition the input into tokens

•
 

We will adapt regular expressions to this goal

( )?s L R∈

Implementation of Lexical Analysis
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Outline

•
 

Specifying lexical structure using regular 
expressions

•
 

Finite automata
–

 
Deterministic Finite Automata (DFAs)

–
 

Non-deterministic Finite Automata (NFAs)

•
 

Implementation of regular expressions
RegExp

 
⇒ NFA ⇒

 
DFA ⇒

 
Tables 



37

Notation

•
 

For convenience, we will use a variation (we will 
allow user-defined abbreviations)

 
in regular 

expression notation

•
 

Union:    A + B                          ≡
 

A | B
•

 
Option:  A + ε ≡ A?

•
 

Range: ‘a’+’b’+…+’z’
 

≡
 

[a-z]
•

 
Excluded range:

complement of [a-z]   ≡
 

[^a-z]
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Regular Expressions ⇒
 

Lexical Specifications

1.
 

Select a set of tokens
•

 
Integer, Keyword, Identifier, LeftPar, ...

2.
 

Write a regular expression (pattern) for the 
lexemes of each token
•

 
Integer

 
= digit +

•
 

Keyword
 

= ‘if’
 

+
 

‘else’
 

+
 

…
•

 
Identifier

 
= letter (letter + digit)*

•
 

LeftPar
 

=
 

‘(‘
•

 
…
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Regular Expressions ⇒
 

Lexical Specifications

3. Construct R, a regular expression matching all 
lexemes for all tokens

R = Keyword
 

+ Identifier
 

+ Integer
 

+ …
= R1

 

+ R2
 

+ R3
 

+ …

Facts: If s ∈
 

L(R)
 

then s
 

is a lexeme
–

 
Furthermore s ∈

 
L(Ri

 

)
 

for some “i”
–

 
This “i”

 
determines the token that is reported
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Regular Expressions ⇒
 

Lexical Specifications

4.
 

Let input be x1
 

…xn
•

 
(x1

 

... xn
 

are characters in the language alphabet)
•

 
For 1 ≤

 
i ≤

 
n

 
check

x1
 

…xi
 

∈
 

L(R)
 

?

5.
 

It must be that
x1

 

…xi
 

∈
 

L(Rj

 

)
 

for some i
 

and j
(if there is a choice, pick a smallest such j)

6.
 

Report token j, remove x1…xi
 

from input and 
go to step 4
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How to Handle Spaces and Comments?

1.
 

We could create a token Whitespace
Whitespace

 
= (‘

 
’

 
+ ‘\n’

 
+ ‘\t’)+

•
 

We could also add comments in there
•

 
An input "    \t\n   555   "

 
is transformed into 

Whitespace Integer Whitespace
2.

 
Lexical analyzer skips spaces (preferred)
•

 
Modify step 5 from before as follows:
It must be that xk

 

... xi
 

∈
 

L(Rj
 

)
 

for some j
 

such 
that x1

 

... xk-1
 

∈
 

L(Whitespace)
•

 
Parser is not bothered with spaces
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Ambiguities (1)

•
 

There are ambiguities in the algorithm

•
 

How much input is used? What if
•

 
x1

 

…xi
 

∈
 

L(R)
 

and also x1
 

…xK
 

∈
 

L(R)

•
 

The “maximal munch”
 

rule: Pick the longest 
possible substring that matches R
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Ambiguities (2)

•
 

Which token is used? What if
•

 
x1

 

…xi
 

∈
 

L(Rj

 

)
 

and also x1
 

…xi
 

∈
 

L(Rk

 

)

•
 

Rule: use rule listed first (j
 

if j < k)

•
 

Example:
–

 
R1

 

= Keyword
 

and R2
 

= Identifier
–

 
“if”

 
matches both

–
 

Treats “if”
 

as a keyword not an identifier
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Error Handling

•
 

What if
No rule matches a prefix of input ?

•
 

Problem: Can’t just get stuck …
•

 
Solution: 
–

 
Write a rule matching all “bad”

 
strings

–
 

Put it last
•

 
Lexical analysis tools allow the writing of:
R = R1

 

+ ... + Rn
 

+ Error
–

 
Token Error

 
matches if nothing else matches
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Summary

•
 

Regular expressions provide a concise notation 
for string patterns

•
 

Use in lexical analysis requires small extensions
–

 
To resolve ambiguities

–
 

To handle errors
•

 
Good algorithms known (next)
–

 
Require only single pass over the input

–
 

Few operations per character (table lookup)
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Regular Languages & Finite Automata

Basic formal language theory result:
Regular expressions and finite automata both 
define the class of regular languages.

Thus, we are going to use:
•

 
Regular expressions for specification

•
 

Finite automata for implementation  
(automatic generation of lexical analyzers)
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Finite Automata

A finite automaton is a recognizer for the 
strings of a regular language

A finite automaton consists of
–

 
A finite input alphabet Σ

–
 

A set of states S
–

 
A start state n

–
 

A set of accepting states F ⊆
 

S
–

 
A set of transitions  state →input

 
state
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Finite Automata

•
 

Transition
s1

 

→a
 

s2
•

 
Is read

In state s1
 

on input “a”
 

go to state s2

•
 

If end of input
–

 
If in accepting state ⇒ accept

•
 

Otherwise
–

 
If no transition possible ⇒ reject 
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Finite Automata State Graphs

•
 

A state

•
 

The start state

•
 

An accepting state

•
 

A transition
a
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A Simple Example

•
 

A finite automaton that accepts only “1”

•
 

A finite automaton accepts a string if we can 
follow transitions labeled with the characters 
in the string from the start to some accepting 
state 

1
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Another Simple Example

•
 

A finite automaton accepting any number of 1’s 
followed by a single 0

•
 

Alphabet: {0,1}

0

1
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And Another Example

•
 

Alphabet {0,1}
•

 
What language does this recognize?

0

1

0

1

0

1
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And Another Example

•
 

Alphabet still { 0, 1 }

•
 

The operation of the automaton is not 
completely defined by the input
–

 
On input “11”

 
the automaton could be in either state 

1

1

54

Epsilon Moves

•
 

Another kind of transition: ε-moves

ε

•
 

Machine can move from state A to state B 
without reading input

A B
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Deterministic and Non-Deterministic Automata

•
 

Deterministic Finite Automata (DFA)
–

 
One transition per input per state

–
 

No ε-moves
•

 
Non-deterministic Finite Automata (NFA)
–

 
Can have multiple transitions for one input in a 
given state

–
 

Can have ε-moves
•

 
Finite automata have finite memory
–

 
Enough to only encode the current state

56

Execution of Finite Automata

•
 

A DFA can take only one path through the 
state graph
–

 
Completely determined by input

•
 

NFAs
 

can choose
–

 
Whether to make ε-moves

–
 

Which of multiple transitions for a single input to 
take



57

Acceptance of NFAs

•
 

An NFA can get into multiple states

•
 

Input:

0

1

1

0

1 0 1

•
 

Rule: NFA accepts an input if it can
 

get in a 
final state
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NFA vs. DFA (1)

•
 

NFAs
 

and DFAs
 

recognize the same set of 
languages (regular languages)

•
 

DFAs
 

are easier to implement
–

 
There are no choices to consider
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NFA vs. DFA (2)

•
 

For a given language the NFA can be simpler 
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

•
 

DFA can be exponentially larger than NFA 
(contrary to what is shown in the above example)
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Regular Expressions to Finite Automata

•
 

High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA
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Regular Expressions to NFA (1)

•
 

For each kind of reg. expr, define an NFA
–

 
Notation: NFA for regular expression M

i.e. our automata have one
 

start and one
 

accepting state   

M

•
 

For ε
ε

•
 

For input a a
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Regular Expressions to NFA (2)

•
 

For AB

A Bε

•
 

For A + B

A

B

ε
ε

ε

ε
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Regular Expressions to NFA (3)

•
 

For A*

Aε

ε

ε
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Example of Regular Expression →
 

NFA conversion

•
 

Consider the regular expression
(1+0)*1

•
 

The NFA is

ε

1C E
0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J
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NFA to DFA. The Trick

•
 

Simulate the NFA
•

 
Each state of DFA 
= a non-empty subset of states of the NFA

•
 

Start state 
= the set of NFA states reachable through ε-moves 

from NFA start state
•

 
Add a transition S →a S’

 
to DFA iff

–
 

S’
 

is the set of NFA states reachable from any
 state in S after seeing the input a

•
 

considering ε-moves as well
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NFA to DFA. Remark

•
 

An NFA may be in many states at any time

•
 

How many different states ?

•
 

If there are N states, the NFA must be in 
some subset of those N states

•
 

How many subsets are there?
–

 
2N

 
-

 
1 = finitely many
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NFA to DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1
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Implementation

•
 

A DFA can be implemented by a 2D table T
–

 
One dimension is “states”

–
 

Other dimension is “input symbols”
–

 
For every transition Si

 

→a Sk
 

define T[i,a] = k

•
 

DFA “execution”
–

 
If in state Si

 

and input a, read T[i,a] = k and skip to 
state Sk

–
 

Very efficient
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Table Implementation of a DFA

S

T

U

0

1

0

10 1

0 1
S T U
T T U
U T U
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Implementation (Cont.)

•
 

NFA → DFA conversion is at the heart of 
tools such as lex,

 
ML-Lex,

 
flex

 
or jlex

•
 

But, DFAs
 

can be huge

•
 

In practice, flex-like tools trade off speed 
for space in the choice of NFA and DFA 
representations
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Theory vs. Practice

Two differences:

•
 

DFAs recognize lexemes.  A lexer
 

must return 
a type of acceptance (token type) rather than 
simply an accept/reject indication.

•
 

DFAs
 

consume the complete string and accept 
or reject it.  A lexer

 
must find the end of the 

lexeme in the input stream and then find the 
next one, etc.


