Introduction to Parsing
Ambiguity and Syntax Errors

Outline

* Regular languages revisited

- Parser overview

+ Context-free grammars (CFG's)
* Derivations

- Ambiguity

- Syntax errors

Languages and Automata

* Formal languages are very important in CS
- Especially in programming languages and compilers

* Regular languages
- The weakest formal languages widely used
- Many applications

+ We will also study context-free languages

Limitations of Regular Languages

Intuition: A finite automaton that runs long
enough must repeat states

- A finite automaton cannot remember number
of times it has visited a particular state

- because a finite automaton has finite memory
- Only enough to store in which state it is
- Cannot count, except up to a finite limit

* Many languages are not regular

- E.g., the language of balanced parentheses is
not regular: { (") | i > 0}

The Functionality of the Parser

Example

* Input: sequence of tokens from lexer

* Output: parse tree of the program

+ If-then-else statement
iIT (X ==y) then z = 1; else z = 2;

* Parser input

IF (ID == ID) THEN ID = INT; ELSE ID = INT;
* Possible parser output
IF-THEN-ELSE
- T
D ID ID INT ID INT

Comparison with Lexical Analysis

The Role of the Parser

Phase Input Output

Lexer Sequence of | Sequence of
characters tokens

Parser Sequence of Parse tree
tokens

* Not all sequences of tokens are programs ...

* Parser must distinguish between valid and
invalid sequences of tokens

- We need

- A language for describing valid sequences of tokens

- A method for distinguishing valid from invalid
sequences of tokens

Context-Free Grammars

* Many programming language constructs have a
recursive structure

- E.g. ASTMT is of the form
if COND then STMT else STMT ,or
while COND do STMT , or

- Context-free grammars are a natural notation
for this recursive structure

CFGs (Cont.)

A CFG consists of
- A set of terminals T
- A set of non-terminals N
- A start symbo/ 5 (a non-terminal)
- A set of productions

Assuming X € N the productions are of the form

X —e¢ ,or
X->Y,Y,..Y, where Y. e NuT

10

Notational Conventions

« In these lecture notes
- Non-terminals are written upper-case
- Terminals are written lower-case

- The start symbol is the left-hand side of the first
production

11

Examples of CFGs

A fragment of an example language (simplified):

STMT = if COND then STMT else STMT
| while COND do STMT
| id = int

12

Examples of CFGs (cont.)

Grammar for simple arithmetic expressions:

13

The Language of a CFG

Read productions as replacement rules:

X->Y .Y,

Means X can be replaced by Y, ... Y, (in this order)
X—>e¢

Means X can be erased (replaced with empty string)

14

Key Idea

(1) Begin with a string consisting of the start
symbol "S"

(2) Replace any non-terminal X in the string by
a right-hand side of some production

X oYY

(3) Repeat (2) until there are no non-terminals in
the string

15

The Language of a CFG (Cont.)

More formally, we write
X, X X X oo XYY X e X
if there is a production

X. =Y Y

16

The Language of a CFG (Cont.)

Write
Xl...xn_*>Yl...Ym
if
xl.”xn _)_>_>Y1Y

in O or more steps

17

The Language of a CFG

Let & be a context-free grammar with start
symbol 5. Then the language of & is:

a,...a |S—a,...a, and every @, is a terminal

18

Terminals

- Terminals are called so because there are no
rules for replacing them

* Once generated, terminals are permanent

 Terminals ought to be tokens of the language

19

Examples

L(G) is the language of the CFG G
Strings of balanced parentheses {(i)i 1> 0}

Two equivalent ways of writing the grammar G:

S — (95) S — (95)
S —» ¢ Or | ¢

20

Example

A fragment of our example language (simplified):

STMT — if COND then STMT
| if COND then STMT else STMT
| while COND do STMT

| id = int
COND > (id == id)
| (id 1= id)

21

Example (Cont.)

Some elements of the our language

id = int

if (id ==id) then id = int else id = int

while (id '=id) do id = int

while (id == id) do while (id !=id) do id = int

if (id !=id) then if (id == id) then id = int else id = int

22

Arithmetic Example

Simple arithmetic expressions:
E - E+E |E+E | (E) | id

Some elements of the language:

id id + id
(id) id * id
(id) * id | id * (id)

23

Notes

The idea of a CFG is a big step.
Buft:

* Membership in a language is just "yes" or "no”;
we also need the parse tree of the input

* Must handle errors gracefully

* Need an implementation of CFG's
- e.g., yacc/bison/ML-yacc/...

24

More Notes

* Form of the grammar is important
- Many grammars generate the same language
- Parsing tools are sensitive to the grammar

Note: Tools for regular languages (e.g., lex/ML-Lex)
are also sensitive to the form of the regular
expression, but this is rarely a problem in practice

25

Derivations and Parse Trees

A derivation is a sequence of productions

A derivation can be drawn as a tree
- Start symbol is the tree's root

- For a production X —Y,---Y_ add children Y, ---Y,
to node X

26

Derivation Example

* Grammar
E - E+E|E*E | (E)|id

-+ String
id * 1d +1d

27

Derivation Example (Cont.)

E — E+E |E*E | (E) | id

c /7\
— E+E c N .
> ENEE N
— 1d*E+E E * E id
& id*id+E |
id id
— 1d*1d +1d

28

Derivation in Detail (1)

E — E+E |E*E | (E) | id
E

29

Derivation in Detail (2)

E — E+E |E*E | (E) | id

E
E + E
E
— E+E

30

Derivation in Detail (3)

E — E+E | E*E | (E) | id

E
E E ¥ E
s E4E E/*NE
— E=*E+E

31

Derivation in Detail (4)

E — E+E |E*E | (E) | id

E
E /’\
E r E
— E+E /’\
— Ex*E+E E * E
 id*E+E

32

Derivation in Detail (5)

E — E+E |E*E | (E) | id

E
E /y\
— E+E E + E
— E=*E+E /J\
— 1d*E+E - -
— id*id+E id id

33

Derivation in Detail (6)

E — E+E |E*E | (E) | id

c /T\
— E+E c .\ .
— E*E+E /¥\
— 1d*E+E E * E id
& id*id+E |
id id
— 1d=*1d +1d

34

Notes on Derivations

- A parse tree has
- Terminals at the leaves
- Non-terminals at the interior nodes

« An in-order traversal of the leaves is the
original input

* The parse tree shows the association of
operations; the input string does not !

35

Left-most and Right-most Derivations

+ What was shown before E — E+E | E*E | (E) | id
was a /eft-most derivation

- At each step, we replaced E
the left-most non-terminal

— E+E
+ There is an equivalent — FE+id
notion of a right-most
derivation — E*E+1d
- Shown on the right . .
— E=1d+1d
— id=*id +1id

36

Right-most Derivation in Detail (1)

E — E+E |E*E | (E) | id
E

37

Right-most Derivation in Detail (2)

E — E+E |E*E | (E) | id

E
E + E
E
— E+E

38

Right-most Derivation in Detail (3)

E — E+E | E*E | (E) | id

E
E E + E
— EAE .
I
— E+id

39

Right-most Derivation in Detail (4)

E — E+E |E*E | (E) | id

E
E /’\
E + E
— E+E /¥\ ‘
— E+id E * E id

—> E*xE+1d

40

Right-most Derivation in Detail (5)

E — E+E |E*E | (E) | id

Right-most Derivation in Detail (6)

E — E+E |E*E | (E) | id

E E E
— E+E
— E+E E + E E + E
— E+id
— E+id /y\ _ /y\
, E * E id — E*E+id E * E id
— E*E+id | . , | |
_ , _ — E=xi1d+1id _
— E=x1d+1d id S | id
— 1d*1d +1d
Derivations and Parse Trees Summary of Derivations
* Note that: - We are not just interested in whether
- right-most and left-most derivations have the same sel(6)
parse tree

- for each parse tree, there is a right-most and a
left-most derivation

* The difference is just in the order in which
branches are added

43

- We need a parse tree for s

» A derivation defines a parse tree
- But one parse tree may have many derivations

* Left-most and right-most derivations are
important in parser implementation

44

Ambiguity

« Grammar:

E->E+E|E*E| (E)|int

 The string int * int + int has two parse trees

E E
/’\ /’\
E + E E x E
E +« E Int nt E + E
| | | |
Int Nt int Nt

45

Ambiguity (Cont.)

A grammar is ambiguous if it has more than
one parse tree for some string

- Equivalently, if there is more than one right-most
or left-most derivation for some string

- Ambiquity is bad
- Leaves meaning of some programs ill-defined

+ Ambiguity is common in programming languages
- Arithmetic expressions
- IF-THEN-ELSE

46

Dealing with Ambiguity

* There are several ways to handle ambiguity

* Most direct method is to rewrite the grammar
unambiguously

ES>T+E|T
Toint*T|int | (E)

+ This grammar enforces precedence of * over +

47

Ambiguity: The Dangling Else

* Consider the following grammar

S > if CthenS
| if Cthen Selse S
| OTHER

* This grammar is also ambiguous

48

The Dangling Else: Example

* The expression
if C; then if C, then S5 else S,

has two parse trees

« Typically we want the second form

49

The Dangling Else: A Fix

- else should match the closest unmatched then
* We can describe this in the grammar

S —> MIF /* all then are matched */
| UIF /* some then are unmatched */

MIF — if C then MIF else MIF

| OTHER
UIF — if C then S
| if C then MIF else UIF

- Describes the same set of strings

50

The Dangling Else: Example Revisited

* The expression if C; then if C, then S5 else S,

if
N
Cl lf
CZ 53 54 S3

* A valid parse tree
(for a UIF)

- Not valid because the
then expression is not
a MIF

51

Ambiguity

* No general techniques for handling ambiguity

- Impossible to convert automatically an
ambiguous grammar to an unambiguous one

* Used with care, ambiguity can simplify the
grammar
- Sometimes allows more natural definitions
- However, we need disambiguation mechanisms

52

Precedence and Associativity Declarations

* Instead of rewriting the grammar
- Use the more natural (ambiguous) grammar
- Along with disambiguating declarations

« Most tools allow precedence and associativity
declarations to disambiguate grammars

+ Examples ...

53

Associativity Declarations

» Consider the grammar E->E+E]|int
- Ambiguous: fwo parse trees of int + int + int

E E

/’\

E + E

/¥\ ‘

E 4+ E int
| |

int int

int
* Left associativity declaration: %left +

54

Precedence Declarations

» Consider the grammar E > E+E |E *E | int
And the string int + int * int

int

« Precedence declarations: %left +
left *

55

Error Handling

* Purpose of the compiler is
- To detect non-valid programs
- To translate the valid ones

* Many kinds of possible errors (e.g. in C)

Error kind Example Detected by ...
Lexical % Lexer
Syntax X *% ... Parser
Semantic . int x;y = x(3); ... Type checker
Correctness your favorite program Tester/User

56

Syntax Error Handling

* Error handler should
- Report errors accurately and clearly
- Recover from an error quickly
- Not slow down compilation of valid code

* Good error handling is not easy to achieve

57

Approaches to Syntax Error Recovery

* From simple to complex
- Panic mode
- Error productions
- Automatic local or global correction

* Not all are supported by all parser generators

58

Error Recovery: Panic Mode

- Simplest, most popular method

- When an error is detected:
- Discard tokens until one with a clear role is found
- Continue from there

* Such tokens are called synchronizing tokens
- Typically the statement or expression terminators

59

Syntax Error Recovery: Panic Mode (Cont.)

- Consider the erroneous expression
(1++2)+3
* Panic-mode recovery:
- Skip ahead to next integer and then continue

* (ML)-Yacc: use the special terminal error fo
describe how much input to skip
E—>int | E+E|(E)|errorint| (error)

60

Syntax Error Recovery: Error Productions

« Idea: specify some recovery rules in the
grammar based on known common mistakes

- Essentially promotes common errors to
alternative syntax

+ Example:

- Write 5 x instead of 5 * x

- Add the productionE —» .. | EE
- Disadvantage

- Complicates the grammar

61

Syntax Error Recovery: Past and Present

- (Distant) Past
- Slow recompilation cycle (even once a day)
- Find as many errors in one cycle as possible
- Researchers could not let go of the topic

* Present
- Quick recompilation cycle
- Users tend to correct one error/cycle
- Complex error recovery is needed less
- Panic-mode seems enough

62

