Abstract Syntax Trees
&
Top-Down Parsing

Review of Parsing

* Given a language L(G), a parser consumes a
sequence of tokens s and produces a parse free
* Issues:
- How do we recognize that s € L(G) ?
A parse tree of s describes how s € L(G)

Ambiguity: more than one parse tree (possible
interpretation) for some string s

Error: no parse tree for some string s
How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a
sequence of tokens

* The rest of the compiler needs a structural
representation of the program
- Abstract syntax trees

- Like parse trees but ignore some details
- Abbreviated as AST

Abstract Syntax Trees (Cont.)

* Consider the grammar
E—int|(E)|E+E

* And the string
5+ (2+3)

« After lexical analysis (a list of tokens)

lllll

* During parsing we build a parse tree ...




Example of Parse Tree

E * Traces the operation
T of the parser
E * - » Captures the nesting
‘ /l\ structure
ints ( E ) * But too much info
- Parentheses
/l\ - Single-successor nodes
E * E
| |
int, int;

Example of Abstract Syntax Tree

PLUS /

PLUS| , | —

5 2 3

- Also captures the nesting structure

- But abstracts from the concrete syntax
— more compact and easier to use

* An important data structure in a compiler

Semantic Actions

« This is what we will use to construct ASTs

+ Each grammar symbol may have attributes

- An attribute is a property of a programming
language construct

- For terminal symbols (lexical tokens) attributes can
be calculated by the lexer

» Each production may have an action
- Writtenas: X VY, .. Y, { action }
- That can refer to or compute symbol attributes

Semantic Actions: An Example

* Consider the grammar
E—int|E+E|(E)
* For each symbol X define an attribute X.val
- For terminals, val is the associated lexeme
- For non-terminals, val is the expression's value
(which is computed from values of subexpressions)
- We annotate the grammar with actions:
E — int { E.val = int.val }
| E;+E, { E.val = E,.val + E,.val }
| (E;) { E.val = E,.val }




Semantic Actions: An Example (Cont.)

- String:
- Tokens:

5+ (2+3)
("int, '+ int3 ")

ints

Productions

E >E+E,

E; — intg
E, — (Es)
E; > E,+
E, — int,
Es — int;

Es

LI A |

-

Equations

E.val = E;.val + E,.val
E,.val = ints.val = 5
E,.val = E;.val

E;.val = E4.val + Es.val
E,.val = int,.val = 2
Es.val = int3.val = 3

Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

- Example:
E;.val = E4.val + Es.val
- Must compute E,.val and Ex.val before E;.val
- We say that E;.val depends on E,.val and Es.val

* The parser must find the order of evaluation

10

Dependency Graph

N
N

\

-+ Each node labeled with
a hon-terminal E has
one slot for its val
attribute

A\ Note the dependencies

)

1

Evaluating Attributes

* An attribute must be computed after all its
successors in the dependency graph have been
computed

- In the previous example attributes can be
computed bottom-up

* Such an order exists when there are no cycles
- Cyclically defined attributes are not legal

12




Semantic Actions: Notes (Cont.)

- Synthesized attributes

- Calculated from attributes of descendents in the
parse tree

- E.val is a synthesized attribute
- Can always be calculated in a bottom-up order

* Grammars with only synthesized attributes
are called S-attributed grammars
- Most frequent kinds of grammars

13

Inherited Attributes

- Another kind of attributes

» Calculated from attributes of the parent
node(s) and/or siblings in the parse tree

+ Example: a line calculator

14

A Line Calculator

* Each line contains an expression

E—>int | E+E
* Each line is terminated with the = sign
L>E=| +E-=

 In the second form, the value of evaluation of
the previous line is used as starting value

* A program is a sequence of lines
P> ¢ | PL

15

Attributes for the Line Calculator

* Each E has a synthesized attribute val
- Calculated as before

» Each L has a synthesized attribute val
L>E-= {L.val = E.val }
| +E= {L.val =E.val +L.prev}
* We need the value of the previous line
* We use an inherited attribute L.prev

16




Attributes for the Line Calculator (Cont.)

* Each P has a synthesized attribute val
- The value of its last line
Poe {Pval=0}
| P, L {P.val = L.val;
L.prev = P,.val }
* Each L has an inherited attribute prev
- L.prev is inherited from sibling P,.val

+ Example ...

17

Example of Inherited Attributes

- val synthesized

Pl ~~|
P l' 4, ................ _4 _l: . +:1 - prev inherited
: — T :
: + E1 .+ \\ =
€10 g N * All can be
S M computed in
E. ! Es | o depth-first
| } | order

18

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs

* And many other things as well
- Also used for type checking, code generation, ...

- Process is called syntax-directed translation
- Substantial generalization over CFGs

19

Constructing an AST

* We first define the AST data type

- Consider an abstract tree type with two
constructors:

mkleaf(n) = n

mkplus( : ) =

NN

PLUS| , |

A

20




Constructing a Parse Tree

+ We define a synthesized attribute ast
- Values of ast values are ASTs

- We assume that int.lexval is the value of the
integer lexeme

- Computed using semantic actions

E - int { E.ast = mkleaf(int.lexval) }
| E;+E, { E.ast = mkplus(E,.ast, E,.ast) }
| (E;) { E.ast = E,.ast}

21

Parse Tree Example

* Consider the string ints '+ ‘(" int, '+ int; ")
* A bottom-up evaluation of the ast attribute:

E.ast = mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))

PLUS|

PLUS| —]

22

Review of Abstract Syntax Trees

+ We can specify language syntax using CFG
* A parser will answer whether s € L(G)

+ ... and will build a parse tree

* ... which we convert tfo an AST

* ...and pass on to the rest of the compiler

« Next two & a half lectures:

- How do we answer s € L(G) and build a parse tree?
+ After that: from AST to assembly language

23

Second-Half of Lecture: Outline

 Implementation of parsers
- Two approaches
- Top-down
- Bottom-up
* These slides: Top-Down
- Easier to understand and program manually
- Then: Bottom-Up
- More powerful and used by most parser generators

24




Introduction to Top-Down Parsing

* Terminals are seen in order of
appearance in the token

stream: /AN
t, t5 T, tg 19 t, B tg
/N
* The parse tree is constructed c D
- From the top /N
Ts 1o Tg

- From left to right

25

Recursive Descent Parsing: Example

* Consider the grammar
E>T+E | T
T>(E) |int | int*T
+ Token stream is: ints * int,
- Start with top-level non-terminal E

* Try the rules for E in order

26

Recursive Descent Parsing: Example (Cont.)

Tr-y Eo N T1 + E2 Token stream: ints * intz
Then try a rule for T, — ( E3)

- But ( does not match input token ints

Try T;— int . Token matches.

- But + after T, does not match input token *

Try T, > int* T,

- This will match and will consume the two tokens.

+ Try T, — int (matches) but + after T, will be unmatched
« Try T, — int * T; but * does not match with end-of-input

Has exhausted the choices for T,
- Backtrack to choice for E,

EST+E|T
T (E) |int]int*T

Recursive Descent Parsing: Example (Cont.)

. Tr-y Eo N T1 Token stream: ints * intz
* Follow same steps as before for T,
- And succeed with T; - int; * T, and T, — int,

- With the following parse tree

Elo
/-I,-l\
int; = T,
| E->T+E | T
int, T—> () |int|int*T

28




Recursive Descent Parsing: Notes

» Easy to implement by hand
+ Somewhat inefficient (due to backtracking)

- But does not always work ...

29

When Recursive Descent Does Not Work

- Consider a production S - S a
bool S,() { return S() && term(a); }
bool S() { return S,(); }

- S() will get into an infinite loop

- A left-recursive grammar has a hon-terminal S
S »>* Sa for some o

- Recursive descent does not work in such cases
- It goes into an infinite loop

30

Elimination of Left Recursion

+ Consider the left-recursive grammar
S>Salp

S generates all strings starting with a  and
followed by any number of o's

+ The grammar can be rewritten using right-
recursion
S—>BS
S>aS|e

31

More Elimination of Left-Recursion

* In general
5—)5a1|...|5(xn|B1|...|Bm
- All strings derived from S start with one of

By,...B, and continue with several instances of
Ol eee Ol
* Rewrite as
S—>p;S|..1B,S
S—>a;S|..]a,S e

32




General Left Recursion

* The grammar
S>Aalsd
A>SB

is also left-recursive because

S—>*SPa
« This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]

33

Summary of Recursive Descent

- Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically

* Unpopular because of backtracking
- Thought to be too inefficient

- In practice, backtracking is eliminated by
restricting the grammar

34

Predictive Parsers

* Like recursive-descent but parser can
“predict” which production to use
- By looking at the next few tokens
- No backtracking
* Predictive parsers accept LL(k) grammars
- L means "left-to-right" scan of input
- L means “leftmost derivation”
- k means "predict based on k tokens of lookahead”

* Inpractice, LL(1) is used

35

LL(1) Languages

* Inrecursive-descent, for each non-terminal
and input token there may be a choice of
productions

+ LL(1) means that for each non-terminal and
token there is only one production that could
lead to success

» Can be specified via 2D tables
- One dimension for current non-terminal o expand
- One dimension for next token
- A table entry contains one production

36




Predictive Parsing and Left Factoring

* Recall the grammar for arithmetic expressions
E->T+E | T
T>(E) | int | int*T

* Hard to predict because
- For T two productions start with int
- For E it is not clear how to predict

+ A grammar must be left-factored before it is
used for predictive parsing

37

Left-Factoring Example

* Recall the grammar
E>T+E | T
T>(E) | int | int*T

* Factor out common prefixes of productions

E—->TX
X—>+E | ¢
T>(E) | intY
Yo>*T | ¢

« This grammar is equivalent to the original one

38

LL(1) Parsing Table Example

+ Left-factored grammar
E->TX
T>(E) | intY

X—>+E | ¢
YoS5*T | ¢

- The LL(1) parsing table ($ is the end marker):

int

*x

+

(

)

$

TX

TX

+E

intY

(E)

<|H| X|m

*T

39

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry

- "When current non-terminal is E and next input is
int, use production E—> T X"

- This production can generate an int in the first
place

- Consider the [Y,+] entry

- "When current non-terminal is Y and current token
is +, get rid of ¥"

- Y can be followed by + only in a derivation in which
Yo ¢

40




LL(1) Parsing Tables: Errors

« Blank entries indicate error situations

- Consider the [E,*] entry

- "There is no way to derive a string starting with *
from non-terminal E”

41

Using Parsing Tables

* Method similar to recursive descent, except
- For each non-terminal X
- We look at the next token a
- And chose the production shown at [X,a]

- We use a stack to keep track of pending non-
terminals

- We reject when we encounter an error state

+ We accept when we encounter end-of-input

42

LL(1) Parsing Algorithm

initialize stack « <S $> and next

repeat
case stack of
<X, rest> - 1f T[X,*next] == Y, .Y,
then stack « <Y,.Y, rest>;
else error();
<t, rest> - iIf t == *next++
then stack « <rest>;
else error();
until stack == <>

43

LL(1) Parsing Example

Stack Input Action
E$ int *int $ TX
TX$ int * int $ int Y
intY X$ int * int $ terminal
YX$ *int $ *T
*TX$ *int $ terminal
TX$ int $ int Y
intfY X $ int $ terminal
YX$ $ €

X$ $ £

$ $ ACCEPT —————7—T7 1

TX TX

intY (E)

<|H|X|m




Constructing Parsing Tables

* LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

* where no table entry is multiply defined

* Once we have the table
- The parsing is simple and fast
- No backtracking is necessary

- We want to generate parsing tables from CFG

45

Constructing Parsing Tables (Cont.)

* If A > o, where in the line of A do we place o ?
* In the column of t where t can start a string
derived from o
-a—->"tPB
- We say that t € First(a)
* In the column of tif a is ¢ and t can follow an A
-S>"BAtS
- We say t € Follow(A)

46

Computing First Sets

Definition
First(X) = {t | X 5" ta} u{e | X 5" €}

Algorithm sketch
1. First(t)={1t}
2. ¢ € First(X) if X — ¢ is a production
3. e € First(X) if X > A, .. A,
and ¢ € First(A) foreach1<i<n
4. First(a) c First(X) if X > A, .. A, a
and ¢ € First(A) foreach1<i<n

47

Computing First Sets

Definition
First(X) = {t | X 5" ta} u{e | X 5" &}

More constructive alqgorithm

1. First(t)={t}
2. For all productions X — A, ... A,
*  Add First(A,) - {¢} to First(X). Stop if ¢ ¢ First(A,).
Add First(A,) - {€} to First(X). Stop if ¢ ¢ First(A,).

Add First(A,) - {e} to First(X). Stop if ¢ ¢ First(A,).
Add {&} to First(X).

48




First Sets: Example

* Recall the grammar

Eo>TX X—>+E|e
T>(E)|intY Yo*T|e
* First sets

First(()={(}
First())={)}
First(int ) ={int}
First(+)={+}
First(*)={*}

First( T)={int, (}
First(E)={int, (}
First(X)={+¢}
First(Y)={*,¢}

49

Computing Follow Sets

- Definition
Follow(X)={t| S—>"B X165}

* Intuition
- If X — A B then First(B) < Follow(A)
and Follow(X) < Follow(B)
- Also if B —" ¢ then Follow(X) < Follow(A)
- If Sis the start symbol then $ < Follow(S)

50

Computing Follow Sets (Cont.)

Algorithm sketch
1. $ < Follow(S)
2. First(B) - {} < Follow(X)

For each production A — a X

3. Follow(A) < Follow(X)

For each production A — o X B where ¢ € First(p)

51

Computing Follow Sets (Cont.)

Definition
Follow(X)={t| S—>"B X165}

More constructive alqgorithm

1. First compute the First sets for all non-terminals
2. If Sis the start symbol, add $ to Follow(S)
3. For all productions Y — ... X A; ... A,
+  Add First(A,) - {€} to Follow(X). Stop if ¢ ¢ First(A,).
Add First(A,) - {€} to Follow(X). Stop if ¢ ¢ First(A,).

Add First(A,) - {¢} to Follow(X). Stop if ¢ ¢ First(A,).
Add Follow(Y) to Follow(X).

52




Follow Sets: Example

* Recall the grammar

Constructing LL(1) Parsing Tables

» Construct a parsing table T for CFG G

E->TX X—>+E|e¢
T—(E)[intY Y>*Tle - For each production A — a in G do:
 Follow sets - For each terminal t € First(c) do
Follow(+)={int, (} Follow(*)={int, (} TA, t]=a
Follow( () ={int,(} Follow(E)={),$} - If ¢ € First(a), for each t € Follow(A) do
T[A, 1] =«
Follow(X)={$%$,)} Follow(T)=(+).%} ,
- If ¢ € First d$ < Follow(A) d
Follow())={+,).,$} Follow(¥)={+),$) T e mand § < Follou(A)do
Follow(int)={*,+,),%$}
Notes on LL(1) Parsing Tables Review

+ If any entry is multiply defined then G is not
LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well
* Most programming language grammars are not
LL(1)
* There are tools that build LL(1) tables

55

- For some grammars there is a simple parsing
strategy

Predictive parsing (LL(1))

* Next time: a more powerful parsing strategy

56




