Abstract Syntax Trees & Top-Down Parsing

Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree
- **Issues:**
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]
- And the string
 \[5 + (2 + 3) \]
- After lexical analysis (a list of tokens)
 \[\text{int}_5 \ ' + ' \ ' (\ ' \text{int}_2 \ ' + ' \text{int}_3 \ ') ' \]
- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ASTs
- Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \) \{ action \}
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar
 \[
 E \rightarrow \text{int} \mid E + E \mid (E)
 \]
- For each symbol \(X \) define an attribute \(X.\text{val} \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression’s value
 (which is computed from values of subexpressions)
- We annotate the grammar with actions:

 \[
 E \rightarrow \text{int} \quad \{ \text{E.val = int.val} \} \\
 \mid \ E_1 + E_2 \quad \{ \text{E.val = E}_1\text{.val + E}_2\text{.val} \} \\
 \mid \ (E_1) \quad \{ \text{E.val = E}_1\text{.val} \}
 \]
Semantic Actions: An Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: int5 '+' '(' int2 '+' int3 ')

Productions

E → E1 + E2
E1 → int5
E2 → (E3)
E3 → E4 + E5
E4 → int2
E5 → int3

Equations

E.val = E1.val + E2.val
E1.val = int5.val = 5
E2.val = E3.val
E3.val = E4.val + E5.val
E4.val = int2.val = 2
E5.val = int3.val = 3

Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

- Example:

 \[E3.val = E4.val + E5.val \]
 - Must compute \(E4.val \) and \(E5.val \) before \(E3.val \)
 - We say that \(E3.val \) depends on \(E4.val \) and \(E5.val \)

- The parser must find the order of evaluation

Dependency Graph

- Each node labeled with a non-terminal \(E \) has one slot for its \(val \) attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

• **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - `E.val` is a synthesized attribute
 - Can always be calculated in a bottom-up order

• Grammars with only synthesized attributes are called **S-attributed grammars**
 - Most frequent kinds of grammars

Inherited Attributes

• Another kind of attributes
• Calculated from attributes of the parent node(s) and/or siblings in the parse tree

• Example: a line calculator

A Line Calculator

• Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]

• Each line is terminated with the `=` sign
 \[L \rightarrow E = \mid + E = \]

• In the second form, the value of evaluation of the previous line is used as starting value

• A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P L \]

Attributes for the Line Calculator

• Each `E` has a synthesized attribute `val`
 - Calculated as before
• Each `L` has a synthesized attribute `val`
 \[L \rightarrow E = \{ L.val = E.val \} \mid + E = \{ L.val = E.val + L.prev \} \]

• We need the value of the previous line

• We use an inherited attribute `L.prev`
Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute \(\text{val} \)
 - The value of its last line
 \[P \rightarrow \epsilon \quad \{ P.\text{val} = 0 \} \]
 \[| P_1 L \quad \{ P.\text{val} = L.\text{val}; \]
 \[\quad \ L.\text{prev} = P_1.\text{val} \} \]

- Each L has an inherited attribute \(\text{prev} \)
 - \(L.\text{prev} \) is inherited from sibling \(P_1.\text{val} \)

- Example ...

Example of Inherited Attributes

- \(\text{val} \) synthesized
- \(\text{prev} \) inherited
- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called \textit{syntax-directed translation}
 - Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

\[
\text{mkleaf}(n) = \begin{cases} \hline n \end{cases}
\]

\[
\text{mkplus}(\ldots) = \begin{cases} \hline \text{PLUS} \end{cases}
\]
Constructing a Parse Tree

- We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int.lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

\[
\begin{align*}
E \rightarrow & \ \text{int} \quad \{ \text{E.ast} = \text{mkleaf}(\text{int.lexval}) \} \\
| & \ E_1 + E_2 \quad \{ \text{E.ast} = \text{mkplus}(E_1.\text{ast}, E_2.\text{ast}) \} \\
| & \ (E_1) \quad \{ \text{E.ast} = E_1.\text{ast} \}
\end{align*}
\]

Parse Tree Example

- Consider the string \(\text{int}_5 + '(' \text{int}_2 ' + ' \text{int}_3 ')' \)
- A bottom-up evaluation of the \(\text{ast} \) attribute:
 \[
 E.\text{ast} = \text{mkplus}(%5, \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))
 \]

Review of Abstract Syntax Trees

- We can specify language syntax using CFG
- A parser will answer whether \(s \in L(G) \)
- ... and will build a parse tree
- ... which we convert to an AST
- ... and pass on to the rest of the compiler
- Next two & a half lectures:
 - How do we answer \(s \in L(G) \) and build a parse tree?
 - After that: from AST to assembly language

Second-Half of Lecture: Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- These slides: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:
 \[t_2 \ t_5 \ t_6 \ t_8 \ t_9 \]
- The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing: Example

- Consider the grammar
 \[
 E \rightarrow T \ast E \mid T \\
 T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T
 \]
- Token stream is: \(\text{int}_5 \ast \text{int}_2 \)
- Start with top-level non-terminal \(E \)
- Try the rules for \(E \) in order

Recursive Descent Parsing: Example (Cont.)

- Try \(E_0 \rightarrow T_1 + E_2 \)
 - Token stream: \(\text{int}_5 \ast \text{int}_2 \)
- Then try a rule for \(T_1 \rightarrow (E_3) \)
 - But \((\) does not match input token \(\text{int}_5 \)
- Try \(T_1 \rightarrow \text{int} \). Token matches.
 - But \(+ \) after \(T_1 \) does not match input token \(* \)
- Try \(T_1 \rightarrow \text{int} \ast T_2 \)
 - This will match and will consume the two tokens.
 - Try \(T_2 \rightarrow \text{int} \) (matches) but \(+ \) after \(T_1 \) will be unmatched
 - Try \(T_2 \rightarrow \text{int} \ast T_3 \) but \(* \) does not match with end-of-input
- Has exhausted the choices for \(T_1 \)
 - Backtrack to choice for \(E_0 \)

Recursive Descent Parsing: Example (Cont.)

- Try \(E_0 \rightarrow T_1 \)
 - Token stream: \(\text{int}_5 \ast \text{int}_2 \)
- Follow same steps as before for \(T_1 \)
 - And succeed with \(T_1 \rightarrow \text{int}_5 \ast T_2 \) and \(T_2 \rightarrow \text{int}_2 \)
 - With the following parse tree
Recursive Descent Parsing: Notes

• Easy to implement by hand

• Somewhat inefficient (due to backtracking)

• But does not always work ...

When Recursive Descent Does Not Work

• Consider a production $S \rightarrow S a$
  ```
  bool S1() { return S() && term(a); }
  bool S() { return S1(); }
  ```

• $S()$ will get into an infinite loop

• A left-recursive grammar has a non-terminal S

 $S \rightarrow^* S\alpha$ for some α

• Recursive descent does not work in such cases
 - It goes into an infinite loop

Elimination of Left Recursion

• Consider the left-recursive grammar

 $S \rightarrow S \alpha \mid \beta$

• S generates all strings starting with a β and followed by any number of α's

• The grammar can be rewritten using right-recursion

 $S \rightarrow \beta\ S'$

 $S' \rightarrow \alpha\ S' \mid \varepsilon$

More Elimination of Left-Recursion

• In general

 $S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$

• All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$

• Rewrite as

 $S \rightarrow \beta_1\ S' \mid ... \mid \beta_m\ S'$

 $S' \rightarrow \alpha_1\ S' \mid ... \mid \alpha_n\ S' \mid \varepsilon$
General Left Recursion

- The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow S \beta \alpha \]

- This left-recursion can also be eliminated

 [See a Compilers book for a general algorithm]

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept **LL(k)** grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”
- In practice, **LL(1)** is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of productions
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

• Recall the grammar for arithmetic expressions

 \[E \rightarrow T + E \mid T \]

 \[T \rightarrow (E) \mid \text{int} \mid \text{int} * T \]

• Hard to predict because
 - For \(T \) two productions start with \text{int}
 - For \(E \) it is not clear how to predict

• A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

• Recall the grammar

 \[E \rightarrow T + E \mid T \]

 \[T \rightarrow (E) \mid \text{int} \mid \text{int} * T \]

• Factor out common prefixes of productions

 \[E \rightarrow T X \]

 \[X \rightarrow + E \mid \varepsilon \]

 \[T \rightarrow (E) \mid \text{int} Y \]

 \[Y \rightarrow * T \mid \varepsilon \]

• This grammar is equivalent to the original one

LL(1) Parsing Table Example

• Left-factored grammar

 \begin{align*}
 E & \rightarrow T X \\
 T & \rightarrow (E) \mid \text{int} Y
 \end{align*}

 \begin{align*}
 X & \rightarrow + E \mid \varepsilon \\
 Y & \rightarrow * T \mid \varepsilon
 \end{align*}

• The LL(1) parsing table ($$ is the end marker):

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>()</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>int</td>
<td>+E</td>
<td></td>
<td>(E)</td>
<td>$</td>
</tr>
<tr>
<td>T</td>
<td>int</td>
<td></td>
<td>+E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>*T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LL(1) Parsing Table Example (Cont.)

• Consider the \([E, \text{int}]\) entry
 - “When current non-terminal is \(E \) and next input is \text{int}, use production \(E \rightarrow T X \)”
 - This production can generate an \text{int} in the first place

• Consider the \([Y,+]\) entry
 - “When current non-terminal is \(Y \) and current token is +, get rid of \(Y \)”
 - \(Y \) can be followed by + only in a derivation in which \(Y \rightarrow \varepsilon \)
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - “There is no way to derive a string starting with * from non-terminal E”

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal X
 - We look at the next token a
 - And chose the production shown at [X,a]

- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack ← <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] == Y₁…Yₙ
 then stack ← <Y₁…Yₙ rest>;
 else error();
 <t, rest> : if t == *next++
 then stack ← <rest>;
 else error();
 until stack == <>

LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>T</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>(</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
 - where no table entry is multiply defined

- Once we have the table
 - The parsing is simple and fast
 - No backtracking is necessary

- We want to generate parsing tables from CFG

Computing First Sets

Definition

\[\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \cdots A_n \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \cdots A_n \alpha \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)

Computing First Sets (Cont.)

- If \(A \rightarrow \alpha \), where in the line of \(A \) do we place \(\alpha \)?
- In the column of \(t \) where \(t \) can start a string derived from \(\alpha \)
 - \(\alpha \rightarrow^* t \beta \)
 - We say that \(t \in \text{First}(\alpha) \)
- In the column of \(t \) if \(\alpha \) is \(\varepsilon \) and \(t \) can follow an \(A \)
 - \(S \rightarrow^* \beta A \tau \delta \)
 - We say \(t \in \text{Follow}(A) \)

Computing First Sets

Definition

\[\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \} \]

More constructive algorithm

1. \(\text{First}(t) = \{ t \} \)
2. For all productions \(X \rightarrow A_1 \cdots A_n \)
 - Add \(\text{First}(A_1) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_1) \).
 - Add \(\text{First}(A_2) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_2) \).
 - ...
 - Add \(\text{First}(A_n) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_n) \).
 - Add \(\{ \varepsilon \} \) to \(\text{First}(X) \).
First Sets: Example

• Recall the grammar
\[E \rightarrow T \, X \]
\[X \rightarrow + \, E \mid \epsilon \]
\[T \rightarrow (\, E\,) \mid \text{int} \, Y \]
\[Y \rightarrow * \, T \mid \epsilon \]

• First sets
\[\text{First}(\, (\,) = \{\, (\)\}\]
\[\text{First}(\, (\,) = \{\, (\)\}\]
\[\text{First}(\, \text{int} \,) = \{\, \text{int}\}\]
\[\text{First}(\, + \,) = \{\, +\}\]
\[\text{First}(\, * \,) = \{\, *\}\]

Computing Follow Sets

• Definition
\[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta \, X \, \delta \} \]

• Intuition
- If \(X \rightarrow A \, B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \) and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
- Also if \(B \rightarrow^* \epsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
- If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)

Algorithm sketch
1. \$ \in \text{Follow}(S)
2. First(\(\beta \)) - \{\(\epsilon \}\} \subseteq \text{Follow}(X)
 For each production \(A \rightarrow \alpha \, X \, \beta \)
3. Follow(\(A \)) \subseteq \text{Follow}(X)
 For each production \(A \rightarrow \alpha \, X \, \beta \) where \(\epsilon \in \text{First}(\(\beta \)) \)

Computing Follow Sets (Cont.)

Definition
\[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta \, X \, \delta \} \]

More constructive algorithm
1. First compute the First sets for all non-terminals
2. If \(S \) is the start symbol, add \$ to \(\text{Follow}(S) \)
3. For all productions \(Y \rightarrow \ldots \, X \, A_1 \ldots \, A_n \)
 • Add First(\(A_1 \)) - \{\(\epsilon \}\} to \(\text{Follow}(X) \). Stop if \(\epsilon \notin \text{First}(\(A_1 \)) \).
 • Add First(\(A_2 \)) - \{\(\epsilon \}\} to \(\text{Follow}(X) \). Stop if \(\epsilon \notin \text{First}(\(A_2 \)) \).
 • ...
 • Add First(\(A_n \)) - \{\(\epsilon \}\} to \(\text{Follow}(X) \). Stop if \(\epsilon \notin \text{First}(\(A_n \)) \).
 • Add \(\text{Follow}(Y) \) to \(\text{Follow}(X) \).
Follow Sets: Example

- Recall the grammar

 \[
 E \rightarrow T X \\
 T \rightarrow (E) | \text{int} Y \\
 X \rightarrow + E | \varepsilon \\
 Y \rightarrow * T | \varepsilon
 \]

- Follow sets

 - \(\text{Follow}(+) = \{ \text{int}, (\} \)
 - \(\text{Follow}(*) = \{ \text{int}, (\} \)
 - \(\text{Follow}(()) = \{ \text{int}, (\} \)
 - \(\text{Follow}((E)) = \{), $ \}
 - \(\text{Follow}(X)) = \{ $,) \}
 - \(\text{Follow}((T)) = \{ +,), $ \}
 - \(\text{Follow}(()) = \{ +,), $ \}
 - \(\text{Follow}((Y)) = \{ +,), $ \}
 - \(\text{Follow}(\text{int}) = \{ *, +,), $ \}

Constructing LL(1) Parsing Tables

- Construct a parsing table \(T \) for CFG \(G \)

- For each production \(A \rightarrow \alpha \) in \(G \) do:

 - For each terminal \(t \in \text{First}(\alpha) \) do

 \(T[A, t] = \alpha \)

 - If \(\varepsilon \in \text{First}(\alpha) \), for each \(t \in \text{Follow}(A) \) do

 \(T[A, t] = \alpha \)

 - If \(\varepsilon \in \text{First}(\alpha) \) and \(\$ \in \text{Follow}(A) \) do

 \(T[A, \$] = \alpha \)

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then \(G \) is not LL(1)
 - If \(G \) is ambiguous
 - If \(G \) is left recursive
 - If \(G \) is not left-factored
 - And in other cases as well

- Most programming language grammars are not LL(1)

- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy

 Predictive parsing (LL(1))

- Next time: a more powerful parsing strategy