Bottom-up Parsing (Review)

- A bottom-up parser rewrites the input string to the start symbol
- The state of the parser is described as
 \[\alpha | \gamma \]
 - \(\alpha \) is a stack of terminals and non-terminals
 - \(\gamma \) is the string of terminals not yet examined
- Initially: \(I x_1 x_2 \ldots x_n \)

The Shift and Reduce Actions (Review)

Recall the CFG:
\[E \rightarrow E + (E) | \text{int} \]
A bottom-up parser uses two kinds of actions:
- **Shift** pushes a terminal from input on the stack
 \[E + (\text{int}) \Rightarrow E + (\text{int}) \]
- **Reduce** pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)
 \[E + (E + (E) \text{int}) \Rightarrow E + (E \text{int}) \]
Key Issue: When to Shift or Reduce?

- Idea: use a deterministic finite automaton (DFA) to decide when to shift or reduce
 - The input is the stack
 - The language consists of terminals and non-terminals

- We run the DFA on the stack and we examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then shift
 - If X is labeled with “$A \rightarrow \beta$ on tok” then reduce

Representing the DFA

- Parsers represent the DFA as a 2D table
 (Recall table-driven lexical analysis)
- Lines correspond to DFA states
- Columns correspond to terminals and non-terminals
- Typically columns are split into:
 - Those for terminals: the action table
 - Those for non-terminals: the goto table

LR(1) Parsing: An Example

<table>
<thead>
<tr>
<th>Action/State</th>
<th>$int + (int) + (int)$</th>
<th>shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>$E \rightarrow int$</td>
<td></td>
</tr>
<tr>
<td>$E + (int) + (int)$</td>
<td>$E \rightarrow int$</td>
<td></td>
</tr>
<tr>
<td>$E + (int)$</td>
<td>$E \rightarrow E+(E)$</td>
<td></td>
</tr>
<tr>
<td>$E + (E)$</td>
<td>$E \rightarrow E+(E)$</td>
<td></td>
</tr>
</tbody>
</table>

$E \rightarrow int$ on $\$, +

$E \rightarrow E+(E)$ on $\$, +

Representing the DFA: Example

The table for a fragment of our DFA:

<table>
<thead>
<tr>
<th>int</th>
<th>$+$</th>
<th>$()$</th>
<th>$$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>s4</td>
<td></td>
<td>g6</td>
</tr>
<tr>
<td>4</td>
<td>s5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>r$E \rightarrow int$</td>
<td>r$E \rightarrow int$</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>r$E \rightarrow E+(E)$</td>
<td>r$E \rightarrow E+(E)$</td>
</tr>
</tbody>
</table>

sk is shift and goto state k
$r_x \rightarrow \alpha$ is reduce
gk is goto state k
The LR Parsing Algorithm

• After a shift or reduce action we rerun the DFA on the entire stack
 - This is wasteful, since most of the work is repeated

• To avoid this, we remember for each stack element on which state it brings the DFA

• LR parser maintains a stack
 \[\langle \text{sym}_1, \text{state}_1 \rangle \ldots \langle \text{sym}_n, \text{state}_n \rangle\]

 \(\text{state}_k\) is the final state of the DFA on \(\text{sym}_1 \ldots \text{sym}_k\)

Key Issue: How is the DFA Constructed?

• The stack describes the context of the parse
 - What non-terminal we are looking for
 - What production RHS we are looking for
 - What we have seen so far from the RHS

• Each DFA state describes several such contexts
 - E.g., when we are looking for non-terminal \(E\), we might be looking either for an \(\text{int}\) or an \(E + (E)\) RHS

LR(0) Items

• An LR(0) item is a production with a "I" somewhere on the RHS

• The LR(0) items for \(T \rightarrow (E)\) are

 \(T \rightarrow I (E)\)
 \(T \rightarrow (I E)\)
 \(T \rightarrow (E I)\)
 \(T \rightarrow (E) I\)

• The only LR(0) item for \(X \rightarrow \varepsilon\) is \(X \rightarrow I\)

The LR Parsing Algorithm

\[
\text{let } I = w$ \text{ be initial input} \\
\text{let } j = 0 \\
\text{let } \text{DFA state 0 be the start state} \\
\text{let stack } = \langle \text{dummy, 0} \rangle \\
\text{repeat} \\
\text{case } \text{action[top_state(stack), } I[j]] \text{ of} \\
\text{shift } k: \text{ push } \langle I[j++], k \rangle \\
\text{reduce } X \rightarrow A: \\
\text{ pop } |A| \text{ pairs,} \\
\text{ push } \langle X, \text{ goto[top_state(stack), } X] \rangle \\
\text{accept: } \text{halt normally} \\
\text{error: } \text{halt and report error}
\]
LR(0) Items: Intuition

- An item \([X \rightarrow \alpha \ I \beta]\) says that the parser
 - is looking for an \(X\)
 - has an \(\alpha\) on top of the stack
 - expects to find a string derived from \(\beta\) next in the input

- Notes:
 - \([X \rightarrow \alpha \ I \ a \beta]\) means that an \(a\) should follow
 - Then we can shift it and still have a viable prefix
 - \([X \rightarrow \alpha \ I]\) means that we could reduce \(X\)
 - But this is not always a good idea!

LR(1) Items

- An \(LR(1)\) item is a pair:
 \(X \rightarrow \alpha \ I \beta, \ a\)
 - \(X \rightarrow \alpha \beta\) is a production
 - \(a\) is a terminal (the lookahead terminal)
 - \(LR(1)\) means 1 lookahead terminal

- \([X \rightarrow \alpha \ I \beta, \ a]\) describes a context of the parser
 - We are trying to find an \(X\) followed by an \(a\), and
 - We have (at least) \(\alpha\) already on top of the stack
 - Thus we need to see next a prefix derived from \(\beta a\)

Note

- The symbol \(I\) was used before to separate the stack from the rest of input
 - \(\alpha \ I \gamma\), where \(\alpha\) is the stack and \(\gamma\) is the remaining string of terminals

- In items, \(I\) is used to mark a prefix of a production RHS:
 \(X \rightarrow \alpha \ I \beta, \ a\)
 - Here \(\beta\) might contain non-terminals as well

- In either case the stack is on the left of \(I\)

Convention

- We add to our grammar a fresh new start symbol \(S\) and a production \(S \rightarrow E\)
 - Where \(E\) is the old start symbol

- The initial parsing context contains:
 \(S \rightarrow I \ E, \ \$,\)
 - Trying to find an \(S\) as a string derived from \(E\$\)
 - The stack is empty
LR(1) Items (Cont.)

• In context containing
 \[E \rightarrow E + I \(E \), + \]
 - If (follows then we can perform a shift to context containing
 \[E \rightarrow E + (I E), + \]
• In context containing
 \[E \rightarrow E + (E) I , + \]
 - We can perform a reduction with \(E \rightarrow E + (E) \)
 - But only if a + follows

LR(1) Items (Cont.)

• Consider the item
 \[E \rightarrow E + (I E), + \]
• We expect a string derived from \(E) + \)
• Our example has two productions for \(E \)
 \[E \rightarrow \text{int} \]
 \[E \rightarrow E + (E) \]
• We describe this by extending the context
 with two more items:
 \[E \rightarrow \text{int} ,) \]
 \[E \rightarrow I E + (E) ,) \]

The Closure Operation

• The operation of extending the context with items is called the closure operation

\[
\text{Closure} (\text{Items}) = \\
\text{repeat} \\
\text{for each } [X \rightarrow \alpha \mid Y\beta, a] \text{ in Items} \\
\text{for each production } Y \rightarrow \gamma \\
\text{for each } b \text{ in First}(\beta a) \\
\text{add } [Y \rightarrow I \gamma, b] \text{ to Items} \\
\text{until } \text{Items is unchanged}
\]

Constructing the Parsing DFA (1)

• Construct the start context:
 \[E \rightarrow E + (E) I \text{int} \]

\[
\begin{align*}
S & \rightarrow I E , $ \\
E & \rightarrow I E+(E), $ \\
E & \rightarrow I \text{int} , $ \\
E & \rightarrow I E+(E) , + \\
E & \rightarrow I \text{int} , + \\
\end{align*}
\]
• We abbreviate as:
 \[S \rightarrow I E , $ \\
 E \rightarrow I E+(E) , $/+ \\
 E \rightarrow I \text{int} , $/+ \\
\]
Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items
- The start state contains $[S \rightarrow I \ E \ , \ \$]$
- A state that contains $[X \rightarrow \alpha I \ y, \ b]$ is labeled with “reduce with $X \rightarrow \alpha$ on b”
- And now the transitions ...

The DFA Transitions

- A state “State” that contains $[X \rightarrow \alpha I \ y, \ b]$ has a transition labeled y to a state that contains the items “Transition(State, y)”
 - y can be a terminal or a non-terminal

Transition(State, y)
Items = \emptyset
for each $[X \rightarrow \alpha I \ y, \ b]$ in State
 add $[X \rightarrow \alpha y I \ b, \ b]$ to Items
return Closure(Items)

Constructing the Parsing DFA: Example

LR Parsing Tables: Notes

- Parsing tables (i.e., the DFA) can be constructed automatically for a CFG
- But we still need to understand the construction to work with parser generators
 - E.g., they report errors in terms of sets of items
- What kind of errors can we expect?
Shift/Reduce Conflicts

- If a DFA state contains both
 \[X \rightarrow \alpha \mid a \beta, b\] and \[Y \rightarrow \gamma \mid a\]
- Then on input “a” we could either
 - Shift into state \[X \rightarrow \alpha a \mid \beta, b\], or
 - Reduce with \(Y \rightarrow \gamma\)
- This is called a shift-reduce conflict

More Shift/Reduce Conflicts

- Consider the ambiguous grammar
 \[E \rightarrow E + E \mid E * E \mid \text{int}\]
- We will have the states containing
 \[E \rightarrow E * I E, +\] \[E \rightarrow E * E I, +\]
 \[E \rightarrow I E + E, +\] \[E \rightarrow E I + E, +\]
 \[E \rightarrow E, +\] \[E \rightarrow E, +\]
- Again we have a shift/reduce on input +
 - We need to reduce (* binds more tightly than +)
 - Recall solution: declare the precedence of * and +

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else
 \[S \rightarrow \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \text{OTHER}\]
- Will have DFA state containing
 \[S \rightarrow \text{if } E \text{ then } S I, \text{ else}\]
 \[S \rightarrow \text{if } E \text{ then } S I \text{ else } S, x\]
- If else follows then we can shift or reduce
- Default (yacc, ML-yacc, bison, etc.) is to shift
 - Default behavior is as needed in this case

More Shift/Reduce Conflicts

- In yacc declare precedence and associativity:
 \%left +
 \%left *
- Precedence of a rule = that of its last terminal
 See yacc manual for ways to override this default
- Resolve shift/reduce conflict with a shift if:
 - no precedence declared for either rule or terminal
 - input terminal has higher precedence than the rule
 - the precedences are the same and right associative
Using Precedence to Solve S/R Conflicts

• Back to our example:

 \[E \rightarrow E \ast E, + \] \[E \rightarrow E \ast E I, + \]
 \[E \rightarrow I E + E, + \] \Rightarrow \[E \rightarrow I E + E, + \]

 \[E \rightarrow E \ast I E, + \] \[E \rightarrow E + E I, + \]

 \[E \rightarrow I E + E, + \] \Rightarrow \[E \rightarrow I E + E, + \]

• Will choose reduce because precedence of
 rule \(E \rightarrow E \ast E \) is higher than of terminal +

Using Precedence to Solve S/R Conflicts

• Same grammar as before

 \[E \rightarrow E + E | E \ast E | \text{int} \]

• We will also have the states

 \[E \rightarrow E + I E, + \] \[E \rightarrow E + E I, + \]
 \[E \rightarrow I E + E, + \] \Rightarrow \[E \rightarrow I E + E, + \]

• Now we also have a shift/reduce on input +
 - We choose reduce because \(E \rightarrow E + E \) and + have
 the same precedence and + is left-associative

Using Precedence to Solve S/R Conflicts

• Back to our dangling else example

 \[S \rightarrow \text{if} \ E \text{ then } S \ I, \text{ else} \]
 \[S \rightarrow \text{if} \ E \text{ then } S \ I \text{ else } S, \ x \]

• Can eliminate conflict by declaring \text{else} having
 higher precedence than \text{then}

• But this starts to look like “hacking the tables”

• Best to avoid overuse of precedence
 declarations or we will end with unexpected
 parse trees

Precedence Declarations Revisited

The term “precedence declaration” is misleading!

These declarations do not define precedence:
they define conflict resolutions
I.e., they instruct shift-reduce parsers to resolve
conflicts in certain ways

These two are not quite the same!
Reduce/Reduce Conflicts

• If a DFA state contains both
 \[X \rightarrow \alpha \text{ I}, \ a \] and \[Y \rightarrow \beta \text{ I}, \ a \]
 - Then on input “a” we don’t know which production to reduce

• This is called a \textit{reduce/reduce conflict}

More on Reduce/Reduce Conflicts

• Consider the states
 \[S \rightarrow \text{ id I}, \ \$ \]
 \[S' \rightarrow \text{ I S}, \ \$ \]
 \[S \rightarrow \text{ I id}, \ \$ \]
 \[S \rightarrow \text{ I id S}, \ \$ \]

 \Rightarrow_{id} \Rightarrow_{id}

• Reduce/reduce conflict on input $ \$

 \[S' \rightarrow S \rightarrow \text{ id} \]
 \[S' \rightarrow S \rightarrow \text{ id S} \rightarrow \text{ id} \]

• Better to rewrite the grammar as: \[S \rightarrow \varepsilon \mid \text{ id S} \]

Using Parser Generators

• Parser generators automatically construct the parsing DFA given a CFG
 - Use precedence declarations and default conventions to resolve conflicts
 - The parser algorithm is the same for all grammars (and is provided as a library function)

• But most parser generators do not construct the DFA as described before
 - Because the LR(1) parsing DFA has 1000s of states even for a simple language

Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the grammar

• Example: a sequence of identifiers
 \[S \rightarrow \varepsilon \mid \text{ id} \mid \text{ id S} \]

• There are two parse trees for the string \text{ id}

 \[S \rightarrow \text{ id} \]
 \[S \rightarrow \text{ id S} \rightarrow \text{ id} \]

• How does this confuse the parser?
LR(1) Parsing Tables are Big

- But many states are similar, e.g.
 \[E \rightarrow \text{int} \, l, \, $/+ \] \[E \rightarrow \text{int} \, l, \, ,/+ \] \[E \rightarrow \text{int} \, l, \,)/+ \] \[E \rightarrow \text{int} \, l, \, $/+ \]

- Idea: merge the DFA states whose items differ only in the lookahead tokens
 - We say that such states have the same core

- We obtain
 \[E \rightarrow \text{int} \, l, \, $/+ \] \[E \rightarrow \text{int} \, l, \, ,/+ \] \[E \rightarrow \text{int} \, l, \,)/+ \] \[E \rightarrow \text{int} \, l, \, $/+ \]

The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals

- Example: the core of
 \[\{[X \rightarrow \alpha \, l \, \beta, \, b], \,[Y \rightarrow \gamma \, l \, \delta, \, d]\} \]
 is
 \[\{X \rightarrow \alpha \, l \, \beta, \, Y \rightarrow \gamma \, l \, \delta\} \]

LALR States

- Consider for example the LR(1) states
 \[\{[X \rightarrow \alpha \, l, \, a], \,[Y \rightarrow \beta \, l, \, c]\} \]
 \[\{[X \rightarrow \alpha \, l, \, b], \,[Y \rightarrow \beta \, l, \, d]\} \]
- They have the same core and can be merged
- The merged state contains:
 \[\{[X \rightarrow \alpha \, l, \, a/b], \,[Y \rightarrow \beta \, l, \, c/d]\} \]
- These are called LALR(1) states
 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)

A LALR(1) DFA

- Repeat until all states have distinct core
 - Choose two distinct states with same core
 - Merge the states by creating a new one with the union of all the items
 - Point edges from predecessors to new state
 - New state points to all the previous successors
Conversion LR(1) to LALR(1): Example.

The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states

 \{[X \rightarrow \alpha \ I, a], [Y \rightarrow \beta \ I, b]\}

 \{[X \rightarrow \alpha \ I, b], [Y \rightarrow \beta \ I, a]\}

- And the merged LALR(1) state

 \{[X \rightarrow \alpha \ I, a/b], [Y \rightarrow \beta \ I, a/b]\}

- Has a new reduce/reduce conflict

- In practice such cases are rare

LALR vs. LR Parsing: Things to keep in mind

- LALR languages are not natural
 - They are an efficiency hack on LR languages

- Any reasonable programming language has a LALR(1) grammar

- LALR(1) parsing has become a standard for programming languages and parser generators

A Hierarchy of Grammar Classes

Unambiguous Grammars

Ambiguous Grammars

From Andrew Appel, "Modern Compiler Implementation in ML"