
Type Checking

2

Outline

•
 

General properties of type systems

•
 

Types in programming languages

•
 

Notation for type rules
–

 
Logical rules of inference

•
 

Common type rules
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Static Checking

•
 

Refers to the compile-time checking of 
programs in order to ensure that the semantic 
conditions of the language are being followed

Examples of static checks include:
–

 
Type checks

–
 

Flow-of-control checks
–

 
Uniqueness checks

–
 

Name-related checks
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Static Checking (Cont.)

Flow-of-control checks: statements that cause flow of 
control to leave a construct must have some place 
where control can be transferred;                             
e.g., break statements in C

Uniqueness checks: a language may dictate that in some 
contexts, an entity can be defined exactly once;     
e.g., identifier declarations, labels, values in case 
expressions

Name-related checks: Sometimes the same name must 
appear two or more times;                                       
e.g., in Ada

 
a loop or block can have a name that must then 

appear both at the beginning and at the end
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Types and Type Checking

•
 

A type is a set of values together with a set 
of operations that can be performed on them

•
 

The purpose of type checking is to verify that 
operations performed on a value are in fact 
permissible

•
 

The type of an identifier is typically available 
from declarations, but we may have to keep 
track of the type of intermediate expressions
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Type Expressions and Type Constructors

A language usually provides a set of base types 
that it supports together with ways to 
construct other types using type constructors

Through type expressions we are able to 
represent types that are defined in a program
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Type Expressions

•
 

A base type is a type expression
•

 
A type name (e.g., a record name) is a type expression

•
 

A type constructor applied to type expressions is a 
type expression.  E.g.,
–

 
arrays:

 
If T is a type expression and I is a range of 

integers, then array(I,T)
 

is a type expression
–

 
records:

 
If T1, …, Tn

 
are type expressions and f1, …, fn 

are field names, then record((f1,T1),…,(fn,Tn))
 

is a type 
expression

–
 

pointers:
 

If T is a type expression, then pointer(T)
 

is a 
type expression

–
 

functions:
 

If T1, …, Tn, and T are type expressions, then 
so is (T1,…,Tn) →T
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Notions of Type Equivalence

Name equivalence: In many languages, e.g. Pascal, 
types can be given names.  Name equivalence 
views each distinct name as a distinct type.   
So, two type expressions are name equivalent 
if and only if they are identical.

Structural equivalence: Two expressions are 
structurally equivalent if and only if they have 
the same structure; i.e., if they are formed by 
applying the same constructor to structurally 
equivalent type expressions.
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Example of Type Equivalence

In the Pascal fragment

type nextptr = ^node;
prevptr = ^node;

var  p : nextptr;
q : prevptr;

p is not name equivalent to q,
but p and q are structurally equivalent.
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Static Type Systems & their Expressiveness

•
 

A static type system enables a compiler to 
detect many common programming errors

•
 

The cost is that some correct programs are 
disallowed
–

 
Some argue for dynamic type checking instead

–
 

Others argue for more expressive static type 
checking

–
 

But more expressive type systems are also more 
complex
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Compile-time Representation of Types

•
 

Need to represent type expressions in a way that 
is both easy to construct and easy to check

Approach 1: Type Graphs
–

 
Basic types can have predefined “internal values”, 
e.g., small integer values

–
 

Named types can be represented using a pointer 
into a hash table

–
 

Composite type expressions: the node for f(T1,…,Tn) 
contains a value representing the type constructor

 
f, 

and
 

pointers to
 

the nodes for the expressions
 

T1,…,Tn
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Compile-time Representation of Types (Cont.)

Example:
var x, y : array[1..42] of integer;

name

type
...

name

type
...

x

y

integer

type

elem type

dimensions
bounds

array
1

1
42
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Compile-Time Representation of Types

Approach 2: Type Encodings
Basic types use a predefined encoding of the low-order bits

BASIC TYPE ENCODING
boolean 0000
char                   0001
integer               0010

The encoding of a type expression op(T)
 

is obtained by 
concatenating the bits encoding op

 
to the left of the 

encoding of T.  E.g.:
TYPE EXPRESSION

 
ENCODING

char                 00 00 00 0001
array(char) 00 00 01 0001

ptr(array(char)) 00 10 01 0001
ptr(ptr(array(char))) 10 10 01 0001
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Compile-Time Representation of Types: Notes

•
 

Type encodings are simple and efficient
•

 
On the other hand, named types and type 
constructors that take more than one type 
expression as argument are hard to represent 
as encodings.  Also, recursive types cannot be 
represented directly.

•
 

Recursive types (e.g. lists, trees) are not a 
problem for type graphs: the graph simply 
contains a cycle
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Types in an Example Programming Language

•
 

Let’s assume that types are:
–

 
integers & floats (base types)

–
 

arrays of a base type
–

 
booleans

 
(used in conditional expressions)

•
 

The user declares types for all identifiers

•
 

The compiler infers types for expressions
–

 
Infers a type for every expression
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Type Checking and Type Inference

Type Checking is the process of verifying fully 
typed programs

Type Inference is the process of filling in 
missing type information

•
 

The two are different, but are often used 
interchangeably
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Rules of Inference

•
 

We have seen two examples of formal notation 
specifying parts of a compiler
–

 
Regular expressions (for the lexer)

–
 

Context-free grammars (for the parser)

•
 

The appropriate formalism for type checking 
is logical rules of inference
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Why Rules of Inference?

•
 

Inference rules have the form
If Hypothesis is true, then Conclusion is true

•
 

Type checking computes via reasoning
If E1 and E2 have certain types,

then E3
 

has a certain type

•
 

Rules of inference are a compact notation for 
“If-Then”

 
statements
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From English to an Inference Rule

•
 

The notation is easy to read (with practice)

•
 

Start with a simplified system and gradually 
add features

•
 

Building blocks:
–

 
Symbol ∧

 
is “and”

–
 

Symbol
 

⇒ is “if-then”
–

 
x:T

 
is “x

 
has type

 
T”
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From English to an Inference Rule (2)

If e1
 

has type int
 

and e2
 

has type int,            
then e1

 

+ e2
 

has type int

(e1
 

has type int
 

∧
 

e2
 

has type int)
 

⇒
 e1

 

+ e2
 

has type int

(e1
 

: int ∧
 

e2
 

: int)  ⇒
 

e1
 

+ e2
 

: int
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From English to an Inference Rule (3)

The statement 
(e1

 

: int ∧
 

e2
 

: int)  ⇒
 

e1
 

+ e2
 

: int
is a special case of 

Hypothesis1
 

∧
 

. . . ∧
 

Hypothesisn
 

⇒ Conclusion

This is an inference rule
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Notation for Inference Rules

•
 

By tradition inference rules are written

•
 

Type rules have hypotheses and conclusions of 
the form:

├
 

e : T
• ├

 
means “it is provable that . . .”

├
 

Hypothesis1
 

…
 

├
 

Hypothesisn

├
 

Conclusion
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Two Rules

i is an integer
├

 
i : int

[Int]

├
 

e1
 

: int       ├
 

e2
 

: int
├

 
e1

 

+ e2
 

: int
[Add]
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Two Rules (Cont.)

•
 

These rules give templates describing how to 
type integers and + expressions

•
 

By filling in the templates, we can produce 
complete typings

 
for expressions
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Example: 1 + 2

├
 

1 : int
1 is an integer 2 is an integer

├
 

1 + 2 : int
├

 
2 : int
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Soundness

•
 

A type system is sound if
–

 
Whenever ├

 
e : T

–
 

Then e
 

evaluates to a value of type T

•
 

We only want sound rules
–

 
But some sound rules are better than others:

–
 

This rule loses some information

i is an integer
├

 
i : number
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Type Checking Proofs

•
 

Type checking proves facts  e: T
–

 
Proof is on the structure of the AST

–
 

Proof has the shape of the AST
–

 
One type rule is used for each kind of AST node

•
 

In the type rule used for a node e:
–

 
Hypotheses are the proofs of types of e’s 
subexpressions

–
 

Conclusion is the type of e
•

 
Types are computed in a bottom-up pass over 
the AST
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Rules for Constants

├
 

false : bool
[Bool]

f is a floating point number
├

 
f : float

[Float]

├
 

true : bool
[Bool]
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Two More Rules

├
 

e : bool
├

 
not e : bool

[Not]

├
 

e1
 

: bool
 
├

 
e2

 

: T
├

 
while e1

 

do e2
 

: T [While]
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A Problem

•
 

What is the type of a variable reference?

•
 

The local, structural rule does not carry 
enough information to give x

 
a type

x is an identifier
├

 
x : ?

[Var]
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A Solution

•
 

Put more information in the rules!

•
 

A type environment gives types for free
 variables

–
 

A type environment is a function from Identifiers 
to Types

–
 

A variable is free in an expression if it is not 
defined within the expression
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Type Environments

Let E be a function from Identifiers
 

to Types

The sentence E ├
 

e : T
is read:

Under the assumption that variables have    
the types given by E, it is provable that       
the expression e

 
has the type

 
T
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Modified Rules

The type environment is added to the earlier 
rules:

i is an integer
E

 
├

 
i : int

[Int]

E
 

├
 

e1
 

: int   E
 

├
 

e2
 

: int
E

 
├

 
e1

 

+ e2
 

: int
[Add]
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New Rules

And we can now write a rule for variables:

E(x)
 

= T
E

 
├

 
x : T

[Var]
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Type Checking of Expressions

Production Semantic Rules
E  id { if (declared(id.name)) then

    E.type := lookup(id.name).type
else E.type := error(); }

E  int { E.type := integer; }

E  E1 + E2 { if (E1.type == integer AND
       E2.type == integer) then
    E.type := integer;
else E.type := error(); }
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Type Checking of Expressions (Cont.)

May have automatic type coercion, e.g.

E1.type E2.type E.type
integer integer integer
integer float float
float integer float
float float float
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Type Checking of Statements: Assignment

Semantic Rules:
S →

 
Lval := Rval

 
{check_types(Lval.type,Rval.type)}

Note that in general Lval
 

can be a variable or it may be a 
more complicated expression, e.g., a dereferenced

 pointer, an array element, a record field, etc.
Type checking involves ensuring that:

–
 

Lval
 

is a type that can be assigned to,                  
e.g. it is not a function or a procedure

–
 

the types of Lval
 

and Rval
 

are “compatible”,          
i.e,

 
that the language rules provide for coercion of the 

type of Rval
 

to the type of Lval
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Type Checking of Statements: Loops, Conditionals

Semantic Rules:
Loop →

 
while E do S

 
{check_types(E.type,bool)}

Cond
 

→
 

if E then S1 else S2
{check_types(E.type,bool)}


