
Type Checking

2

Outline

•

General properties of type systems

•

Types in programming languages

•

Notation for type rules
–

Logical rules of inference

•

Common type rules

3

Static Checking

•

Refers to the compile-time checking of
programs in order to ensure that the semantic
conditions of the language are being followed

Examples of static checks include:
–

Type checks

–

Flow-of-control checks
–

Uniqueness checks

–

Name-related checks

4

Static Checking (Cont.)

Flow-of-control checks: statements that cause flow of
control to leave a construct must have some place
where control can be transferred;
e.g., break statements in C

Uniqueness checks: a language may dictate that in some
contexts, an entity can be defined exactly once;
e.g., identifier declarations, labels, values in case
expressions

Name-related checks: Sometimes the same name must
appear two or more times;
e.g., in Ada

a loop or block can have a name that must then

appear both at the beginning and at the end

5

Types and Type Checking

•

A type is a set of values together with a set
of operations that can be performed on them

•

The purpose of type checking is to verify that
operations performed on a value are in fact
permissible

•

The type of an identifier is typically available
from declarations, but we may have to keep
track of the type of intermediate expressions

6

Type Expressions and Type Constructors

A language usually provides a set of base types
that it supports together with ways to
construct other types using type constructors

Through type expressions we are able to
represent types that are defined in a program

7

Type Expressions

•

A base type is a type expression
•

A type name (e.g., a record name) is a type expression

•

A type constructor applied to type expressions is a
type expression. E.g.,
–

arrays:

If T is a type expression and I is a range of

integers, then array(I,T)

is a type expression
–

records:

If T1, …, Tn

are type expressions and f1, …, fn

are field names, then record((f1,T1),…,(fn,Tn))

is a type
expression

–

pointers:

If T is a type expression, then pointer(T)

is a
type expression

–

functions:

If T1, …, Tn, and T are type expressions, then
so is (T1,…,Tn) →T

8

Notions of Type Equivalence

Name equivalence: In many languages, e.g. Pascal,
types can be given names. Name equivalence
views each distinct name as a distinct type.
So, two type expressions are name equivalent
if and only if they are identical.

Structural equivalence: Two expressions are
structurally equivalent if and only if they have
the same structure; i.e., if they are formed by
applying the same constructor to structurally
equivalent type expressions.

9

Example of Type Equivalence

In the Pascal fragment

type nextptr = ^node;
prevptr = ^node;

var p : nextptr;
q : prevptr;

p is not name equivalent to q,
but p and q are structurally equivalent.

10

Static Type Systems & their Expressiveness

•

A static type system enables a compiler to
detect many common programming errors

•

The cost is that some correct programs are
disallowed
–

Some argue for dynamic type checking instead

–

Others argue for more expressive static type
checking

–

But more expressive type systems are also more
complex

11

Compile-time Representation of Types

•

Need to represent type expressions in a way that
is both easy to construct and easy to check

Approach 1: Type Graphs
–

Basic types can have predefined “internal values”,
e.g., small integer values

–

Named types can be represented using a pointer
into a hash table

–

Composite type expressions: the node for f(T1,…,Tn)
contains a value representing the type constructor

f,

and

pointers to

the nodes for the expressions

T1,…,Tn

12

Compile-time Representation of Types (Cont.)

Example:
var x, y : array[1..42] of integer;

name

type
...

name

type
...

x

y

integer

type

elem type

dimensions
bounds

array
1

1
42

13

Compile-Time Representation of Types

Approach 2: Type Encodings
Basic types use a predefined encoding of the low-order bits

BASIC TYPE ENCODING
boolean 0000
char 0001
integer 0010

The encoding of a type expression op(T)

is obtained by
concatenating the bits encoding op

to the left of the

encoding of T. E.g.:
TYPE EXPRESSION

ENCODING

char 00 00 00 0001
array(char) 00 00 01 0001

ptr(array(char)) 00 10 01 0001
ptr(ptr(array(char))) 10 10 01 0001

14

Compile-Time Representation of Types: Notes

•

Type encodings are simple and efficient
•

On the other hand, named types and type
constructors that take more than one type
expression as argument are hard to represent
as encodings. Also, recursive types cannot be
represented directly.

•

Recursive types (e.g. lists, trees) are not a
problem for type graphs: the graph simply
contains a cycle

15

Types in an Example Programming Language

•

Let’s assume that types are:
–

integers & floats (base types)

–

arrays of a base type
–

booleans

(used in conditional expressions)

•

The user declares types for all identifiers

•

The compiler infers types for expressions
–

Infers a type for every expression

16

Type Checking and Type Inference

Type Checking is the process of verifying fully
typed programs

Type Inference is the process of filling in
missing type information

•

The two are different, but are often used
interchangeably

17

Rules of Inference

•

We have seen two examples of formal notation
specifying parts of a compiler
–

Regular expressions (for the lexer)

–

Context-free grammars (for the parser)

•

The appropriate formalism for type checking
is logical rules of inference

18

Why Rules of Inference?

•

Inference rules have the form
If Hypothesis is true, then Conclusion is true

•

Type checking computes via reasoning
If E1 and E2 have certain types,

then E3

has a certain type

•

Rules of inference are a compact notation for
“If-Then”

statements

19

From English to an Inference Rule

•

The notation is easy to read (with practice)

•

Start with a simplified system and gradually
add features

•

Building blocks:
–

Symbol ∧

is “and”

–

Symbol

⇒ is “if-then”
–

x:T

is “x

has type

T”

20

From English to an Inference Rule (2)

If e1

has type int

and e2

has type int,
then e1

+ e2

has type int

(e1

has type int

∧

e2

has type int)

⇒
 e1

+ e2

has type int

(e1

: int ∧

e2

: int) ⇒

e1

+ e2

: int

21

From English to an Inference Rule (3)

The statement
(e1

: int ∧

e2

: int) ⇒

e1

+ e2

: int
is a special case of

Hypothesis1

∧

. . . ∧

Hypothesisn

⇒ Conclusion

This is an inference rule

22

Notation for Inference Rules

•

By tradition inference rules are written

•

Type rules have hypotheses and conclusions of
the form:

├

e : T
• ├

means “it is provable that . . .”

├

Hypothesis1

…

├

Hypothesisn

├

Conclusion

23

Two Rules

i is an integer
├

i : int

[Int]

├

e1

: int ├

e2

: int
├

e1

+ e2

: int
[Add]

24

Two Rules (Cont.)

•

These rules give templates describing how to
type integers and + expressions

•

By filling in the templates, we can produce
complete typings

for expressions

25

Example: 1 + 2

├

1 : int
1 is an integer 2 is an integer

├

1 + 2 : int
├

2 : int

26

Soundness

•

A type system is sound if
–

Whenever ├

e : T

–

Then e

evaluates to a value of type T

•

We only want sound rules
–

But some sound rules are better than others:

–

This rule loses some information

i is an integer
├

i : number

27

Type Checking Proofs

•

Type checking proves facts e: T
–

Proof is on the structure of the AST

–

Proof has the shape of the AST
–

One type rule is used for each kind of AST node

•

In the type rule used for a node e:
–

Hypotheses are the proofs of types of e’s
subexpressions

–

Conclusion is the type of e
•

Types are computed in a bottom-up pass over
the AST

28

Rules for Constants

├

false : bool
[Bool]

f is a floating point number
├

f : float

[Float]

├

true : bool
[Bool]

29

Two More Rules

├

e : bool
├

not e : bool

[Not]

├

e1

: bool

├

e2

: T
├

while e1

do e2

: T [While]

30

A Problem

•

What is the type of a variable reference?

•

The local, structural rule does not carry
enough information to give x

a type

x is an identifier
├

x : ?

[Var]

31

A Solution

•

Put more information in the rules!

•

A type environment gives types for free
 variables

–

A type environment is a function from Identifiers
to Types

–

A variable is free in an expression if it is not
defined within the expression

32

Type Environments

Let E be a function from Identifiers

to Types

The sentence E ├

e : T
is read:

Under the assumption that variables have
the types given by E, it is provable that
the expression e

has the type

T

33

Modified Rules

The type environment is added to the earlier
rules:

i is an integer
E

├

i : int

[Int]

E

├

e1

: int E

├

e2

: int
E

├

e1

+ e2

: int
[Add]

34

New Rules

And we can now write a rule for variables:

E(x)

= T
E

├

x : T

[Var]

35

Type Checking of Expressions

Production Semantic Rules
E id { if (declared(id.name)) then

 E.type := lookup(id.name).type
else E.type := error(); }

E int { E.type := integer; }

E E1 + E2 { if (E1.type == integer AND
 E2.type == integer) then
 E.type := integer;
else E.type := error(); }

36

Type Checking of Expressions (Cont.)

May have automatic type coercion, e.g.

E1.type E2.type E.type
integer integer integer
integer float float
float integer float
float float float

37

Type Checking of Statements: Assignment

Semantic Rules:
S →

Lval := Rval

{check_types(Lval.type,Rval.type)}

Note that in general Lval

can be a variable or it may be a
more complicated expression, e.g., a dereferenced

 pointer, an array element, a record field, etc.
Type checking involves ensuring that:

–

Lval

is a type that can be assigned to,
e.g. it is not a function or a procedure

–

the types of Lval

and Rval

are “compatible”,
i.e,

that the language rules provide for coercion of the

type of Rval

to the type of Lval

38

Type Checking of Statements: Loops, Conditionals

Semantic Rules:
Loop →

while E do S

{check_types(E.type,bool)}

Cond

→

if E then S1 else S2
{check_types(E.type,bool)}

