Intermediate Code & Local Optimizations

Lecture Outline
- What is “Intermediate code”?
- Why do we need it?
- How to generate it?
- How to use it?
- Optimizations
 - Local optimizations

Code Generation Summary
- We have so far discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation
- Our compiler goes directly from the abstract syntax tree (AST) to assembly language...
 - ... and does not perform optimizations

Most real compilers use intermediate languages.

Why Intermediate Languages?

ISSUE: Reduce code complexity
- Multiple front-ends
 - gcc can handle C, C++, Java, Fortran, Ada, ...
 - each front-end translates source to the same generic language (called GENERIC)
- Multiple back-ends
 - gcc can generate machine code for various target architectures: x86, x86_64, SPARC, ARM, ...
- **One Icode to bridge them!**
 - Do most optimization on intermediate representation before emitting machine code
Why Intermediate Languages?

ISSUE: When to perform optimizations
- On abstract syntax trees
 - **Pro:** Machine independent
 - **Con:** Too high level
- On assembly language
 - **Pro:** Exposes most optimization opportunities
 - **Con:** Machine dependent
 - **Con:** Must re-implement optimizations when re-targeting
- On an intermediate language
 - **Pro:** Exposes optimization opportunities
 - **Pro:** Machine independent

Kinds of Intermediate Languages

High-level intermediate representations:
- closer to the source language (structs, arrays)
- easy to generate from the input program
- code optimizations may not be straightforward

Low-level intermediate representations:
- closer to target machine: GCC’s RTL, 3-address code
- easy to generate code from
- generation from input program may require effort

“Mid”-level intermediate representations:
- programming language and target independent
- Java bytecode, Microsoft CIL, LLVM IR, ...

Intermediate Code Languages: Design Issues

- Designing a good ICode language is not trivial
- The set of operators in ICode must be rich enough to allow the implementation of source language operations
- ICode operations that are closely tied to a particular machine or architecture, make retargeting harder
- A small set of operations
 - may lead to long instruction sequences for some source language constructs,
 - but on the other hand makes retargeting easier

Intermediate Languages

- Each compiler uses its own intermediate language
- Nowadays, usually an intermediate language is a high-level assembly language
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., *push* translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Architecture of gcc

Three-Address Intermediate Code

- Each instruction is of the form
 \[x := y \text{ op } z \]
 - \(y \) and \(z \) can only be registers or constants
 - Just like assembly
- Common form of intermediate code
- The expression \(x + y \times z \) gets translated as
 \[t_1 := y \times z \]
 \[t_2 := x + t_1 \]
 - temporary names are made up for internal nodes
 - each sub-expression has a “home”

Generating Intermediate Code

- Similar to assembly code generation
- Major difference
 - Use any number of IL registers to hold intermediate results

Example:
\[
\text{if } (x + 2 > 3 \times (y - 1) + 42) \text{ then } z := 0; \\
t_1 := x + 2 \\
t_2 := y - 1 \\
t_3 := 3 \times t_2 \\
t_4 := t_3 + 42 \\
\text{if } t_1 \leq t_4 \text{ goto L} \\
z := 0
\]

Generating Intermediate Code (Cont.)

- \(\text{igen}(e, t) \) function generates code to compute the value of \(e \) in register \(t \)
- Example:
 \[
 \text{igen}(e_1 + e_2, t) =
 \begin{align*}
 &\text{igen}(e_1, t_1) \quad (t_1 \text{ is a fresh register}) \\
 &\text{igen}(e_2, t_2) \quad (t_2 \text{ is a fresh register}) \\
 &t := t_1 + t_2
 \end{align*}
 \]
- Unlimited number of registers
 \[\Rightarrow \text{simple code generation} \]
From ICode to Machine Code

This is almost a macro expansion process

<table>
<thead>
<tr>
<th>ICode</th>
<th>MIPS assembly code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := A[i]$</td>
<td><code>load i into r1</code></td>
</tr>
<tr>
<td></td>
<td><code>la r2, A</code></td>
</tr>
<tr>
<td></td>
<td><code>add r2, r2, r1</code></td>
</tr>
<tr>
<td></td>
<td><code>lw r2, (r2)</code></td>
</tr>
<tr>
<td></td>
<td><code>sw r2, x</code></td>
</tr>
<tr>
<td>$x := y + z$</td>
<td><code>load y into r1</code></td>
</tr>
<tr>
<td></td>
<td><code>load z into r2</code></td>
</tr>
<tr>
<td></td>
<td><code>add r3, r1, r2</code></td>
</tr>
<tr>
<td></td>
<td><code>sw r3, x</code></td>
</tr>
<tr>
<td><code>if x >= y goto L</code></td>
<td><code>load x into r1</code></td>
</tr>
<tr>
<td></td>
<td><code>load y into r2</code></td>
</tr>
<tr>
<td></td>
<td><code>bge r1, r2, L</code></td>
</tr>
</tbody>
</table>

Basic Blocks

- A basic block is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

 - Idea:
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - Each instruction in a basic block is executed after all the preceding instructions have been executed

Basic Block Example

Consider the basic block

```
L: (1)
t := 2 * x (2)
w := t + x (3)
if w > 0 goto L' (4)
```

- No way for (3) to be executed without (2) having been executed right before
 - We can change (3) to $w := 3 \times x$
 - Can we eliminate (2) as well?

Identifying Basic Blocks

- Determine the set of leaders, i.e., the first instruction of each basic block:
 - The first instruction of a function is a leader
 - Any instruction that is a target of a branch is a leader
 - Any instruction immediately following a (conditional or unconditional) branch is a leader

- For each leader, its basic block consists of itself and all instructions up to, but not including, the next leader (or end of function)
Control-Flow Graphs

A **control-flow graph** is a directed graph with
- Basic blocks as nodes
- An edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B

 E.g., the last instruction in A is `goto L_B`

 E.g., the execution can fall-through from block A to block B

Frequently abbreviated as **CFGs**

Control-Flow Graphs: Example

- The body of a function (or method or procedure) can be represented as a control-flow graph

- There is one initial node

- All “return” nodes are terminal

Optimization Overview

- Compiler “optimizations” seek to improve a program’s utilization of some resource
 - Execution time (most often)
 - Code size
 - Network messages sent
 - (Battery) power used, etc.

- Optimization should not alter what the program computes
 - The answer must still be the same
 - Observable behavior must be the same
 - this typically also includes termination behavior
A Classification of Optimizations

For languages like C there are three granularities of optimizations

1. **Local optimizations**
 - Apply to a basic block in isolation
2. **Global optimizations**
 - Apply to a control-flow graph (function body) in isolation
3. **Inter-procedural optimizations**
 - Apply across method boundaries

Most compilers do (1), many do (2) and very few do (3)

Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimizations
- Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in terms of compilation time
 - Some optimizations are hard to get completely right
 - The fancy optimizations are often hard, costly, and difficult to get completely correct
- Goal: maximum improvement with minimum cost

Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
- Example: algebraic simplification

Algebraic Simplification

- Some statements can be deleted
 - $x := x + 0$
 - $x := x \times 1$
- Some statements can be simplified
 - $x := x \times 0 \Rightarrow x := 0$
 - $y := y ** 2 \Rightarrow y := y \times y$
 - $x := x \times 8 \Rightarrow x := x << 3$
 - $x := x \times 15 \Rightarrow \uparrow := x << 4; x := \uparrow - x$
 (on some machines \ll is faster than \times; but not on all!)
Constant Folding

- Operations on constants can be computed at compile time.
- In general, if there is a statement $x := y \text{ op } z$
 - And y and z are constants
 - Then $y \text{ op } z$ can be computed at compile time

- Example: $x := 20 + 22 \Rightarrow x := 42$
- Example: if $42 < 17$ goto L can be deleted

Flow of Control Optimizations

- Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or "fall through" from a conditional
 - Such basic blocks can be eliminated

- Why/how would such basic blocks occur?

- Removing unreachable code makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)

Single Assignment Form

- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment.
- Intermediate code can be rewritten to be in **single assignment** form
 - $x := z + y$ \Rightarrow $x := z + y$
 - $a := x$ \Rightarrow $a := x$
 - $x := 2 \times x$ \Rightarrow $b := 2 \times x$
 - (b is a fresh temporary)

 - More complicated in general, due to control flow (e.g. loops)
 - **Static single assignment (SSA)** form

Common Subexpression Elimination

- Assume
 - A basic block is in single assignment form
 - A definition $x :=$ is the first use of x in a block
- All assignments with same RHS compute the same value

- Example:
 - $x := y + z$ \Rightarrow $x := y + z$
 - \ldots \Rightarrow \ldots
 - $w := y + z$ \Rightarrow $w := x$
 - (the values of x, y, and z do not change in the \ldots code)
Copy Propagation

- If \(w := x \) appears in a block, all subsequent uses of \(w \) can be replaced with uses of \(x \).

- Example:

 \[
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times a
 \end{align*}
 \]

 \[
 \begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times b
 \end{align*}
 \]

- This does not make the program smaller or faster but might enable other optimizations:
 - Constant folding
 - Dead code elimination

Copy Propagation and Constant Folding

- Example:

 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 2 \times a \\
 y &:= x + 6 \\
 t &:= x \times y
 \end{align*}
 \]

 \[
 \begin{align*}
 a &:= 5 \\
 x &:= 10 \\
 y &:= 16 \\
 t &:= 160
 \end{align*}
 \]

Dead Code Elimination

If

\(w := \text{RHS} \) appears in a basic block

\(w \) does not appear anywhere else in the program

Then

the statement \(w := \text{RHS} \) is dead and can be eliminated

- \(\text{Dead} \) = does not contribute to the program’s result

Example: \((a \) is not used anywhere else)

\[
\begin{align*}
 x &:= z + y \\
 a &:= x \\
 x &:= 2 \times x
 \end{align*}
\]

\[
\begin{align*}
 x &:= z + y \\
 a &:= x \\
 b &:= 2 \times x \\
 x &:= 2 \times x
 \end{align*}
\]

Applying Local Optimizations

- Each local optimization does very little by itself

- Typically optimizations interact
 - Performing one optimization enables another

- Optimizing compilers repeatedly perform optimizations until no improvement is possible
 - The optimizer can also be stopped at any time to limit the compilation time
An Example

Initial code:

```plaintext
a := x ** 2  
b := 3  
c := x  
d := c * c  
e := b * 2  
f := a + d  
g := e * f
```

assume that only \(f \) and \(g \) are used in the rest of program

An Example

Algebraic simplification:

```plaintext
a := x ** 2  
b := 3  
c := x  
d := c * c  
e := b * 2  
f := a + d  
g := e * f
```

An Example

Algebraic simplification:

```plaintext
a := x * x  
b := 3  
c := x  
d := c * c  
e := b << 1  
f := a + d  
g := e * f
```

An Example

Copy and constant propagation:

```plaintext
a := x * x  
b := 3  
c := x  
d := c * c  
e := b << 1  
f := a + d  
g := e * f
```
An Example

Copy and constant propagation:
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 3 \ll 1 \\
f &:= a + d \\
g &:= e \times f
\end{align*}

An Example

Constant folding:
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 3 \ll 1 \\
f &:= a + d \\
g &:= e \times f
\end{align*}

An Example

Constant folding:
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f
\end{align*}

An Example

Common subexpression elimination:
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
Common subexpression elimination:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]

Copy and constant propagation:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]

Dead code elimination:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + a \\
g & := 6 \times f
\end{align*}
\]
An Example

Dead code elimination:

\[a := x \times x \]

\[f := a + a \]

\[g := 6 \times f \]

This is the final form

Peephole Optimizations on Assembly Code

• The optimizations presented before work on intermediate code
 - They are target independent
 - But they can be applied on assembly language also

Peephole optimization is an effective technique for improving assembly code

- The “peephole” is a short sequence of (usually contiguous) instructions
- The optimizer replaces the sequence with another equivalent (but faster) one

Implementing Peephole Optimizations

• Write peephole optimizations as replacement rules

\[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]

where the RHS is the improved version of the LHS

• Example:

 move $a \rightarrow b$, move $b \rightarrow a \rightarrow move \rightarrow a \rightarrow b$
 - Works if move $b \rightarrow a$ is not the target of a jump

• Another example:

 addiu $a \rightarrow a$, addiu $a \rightarrow a \rightarrow j \rightarrow addiu \rightarrow a \rightarrow a \rightarrow i+j$

Peephole Optimizations

• Redundant instruction elimination, e.g.:

\[
\begin{array}{c}
\ldots \\
goto L \\
L: \\
\ldots \\
\end{array} \quad \Rightarrow \quad
\begin{array}{c}
\ldots \\
L: \\
\ldots \\
\end{array}
\]

• Flow of control optimizations, e.g.:

\[
\begin{array}{c}
\ldots \\
goto L1 \\
L1: \ goto L2 \\
\ldots \\
\end{array} \quad \Rightarrow \quad
\begin{array}{c}
\ldots \\
goto L1 \\
L1: \ goto L2 \\
\ldots \\
\end{array}
\]
Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: `addiu $a $b 0 → move $a $b`
 - Example: `move $a $a` →
 - These two together eliminate `addiu $a $a 0`

- Just like for local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect

Concluding Remarks

- Multiple front-ends, multiple back-ends via intermediate codes

- Intermediate code is helpful for many optimizations

- Many simple optimizations can still be applied on assembly language

- Next time: global optimizations