Introduction to Lexical Analysis
Outline

• Informal sketch of lexical analysis
 - Identifies tokens in input string

• Issues in lexical analysis
 - Lookahead
 - Ambiguities

• Specifying lexical analyzers (lexers)
 - Regular expressions
 - Examples of regular expressions
Lexical Analysis

• What do we want to do? Example:

 if (i == j)

 then

 z = 0;

 else

 z = 1;

• The input is just a string of characters:

 if (i == j) then

 z = 0;

 else

 z = 1;

• Goal: Partition input string into substrings

 - where the substrings are tokens

 - and classify them according to their role
What's a Token?

- A syntactic category
 - In English:
 noun, verb, adjective, ...
 - In a programming language:
 Identifier, Integer, Keyword, Whitespace, ...
Tokens

- Tokens correspond to sets of strings
 - these sets depend on the programming language

- **Identifier**: strings of letters or digits, starting with a letter

- **Integer**: a non-empty string of digits

- **Keyword**: "else" or "if" or "begin" or ...

- **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
What are Tokens Used for?

- Classify program substrings according to role

- Output of lexical analysis is a stream of tokens...

- ... which is input to the parser

- Parser relies on token distinctions
 - An identifier is treated differently than a keyword
Designing a Lexical Analyzer: Step 1

• Define a finite set of tokens
 - Tokens describe all items of interest
 - Choice of tokens depends on language, design of parser

• Recall

  ```
  if (i == j)
  then
    z = 0;
  else
    z = 1;
  ```

• Useful tokens for this expression:

 Integer, Keyword, Relation, Identifier, Whitespace, (,), =, ;
Designing a Lexical Analyzer: Step 2

- Describe which strings belong to each token

- Recall:
 - **Identifier**: strings of letters or digits, starting with a letter
 - **Integer**: a non-empty string of digits
 - **Keyword**: "else" or "if" or "begin" or ...
 - **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
Lexical Analyzer: Implementation

An implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token
 - The lexeme is the substring
Example

• Recall:

 if (i == j) then z = 0; else z = 1;

• Token-lexeme groupings:
 - Identifier: i, j, z
 - Keyword: if, then, else
 - Relation: ==
 - Integer: 0, 1
 - (,), =, ; single character of the same name
Why do Lexical Analysis?

• Dramatically simplify parsing
 - The lexer usually discards “uninteresting” tokens that don’t contribute to parsing
 • E.g. Whitespace, Comments
 - Converts data early

• Separate out logic to read source files
 - Potentially an issue on multiple platforms
 - Can optimize reading code independently of parser
True Crimes of Lexical Analysis

• Is it as easy as it sounds?

• Not quite!

• Look at some programming language history . . .
Lexical Analysis in FORTRAN

• FORTRAN rule: Whitespace is insignificant

• E.g., `VAR1` is the same as `VA R1`

FORTRAN whitespace rule was motivated by inaccuracy of punch card operators
A terrible design! Example

- **Consider**
 - DO 5 I = 1,25
 - DO 5 I = 1.25

- The first is DO 5 I = 1, 25
- The second is DO5I = 1.25

- Reading left-to-right, the lexical analyzer cannot tell if DO5I is a variable or a DO statement until after “,” is reached
Two important points:

1. The goal is to partition the string
 - This is implemented by reading left-to-right, recognizing one token at a time

2. “Lookahead” may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues

 \[i \text{ vs. } if \]

 \[= \text{ vs. } == \]
Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

\[
\text{IF THEN THEN THEN} = \text{ELSE; ELSE ELSE ELSE} = \text{IF}
\]

can be difficult to determine how to label lexemes
More Modern True Crimes in Scanning

Nested template declarations in C++

\[
\begin{align*}
&\text{vector<vector<int>> myVector} \\
&\text{vector < vector < int >> myVector} \\
&(\text{vector < (vector < (int >> myVector)})
\end{align*}
\]
Review

• The goal of lexical analysis is to
 - Partition the input string into *lexemes* (the smallest program units that are individually meaningful)
 - Identify the token of each lexeme

• *Left-to-right scan* ⇒ lookahead sometimes required
Next

• We still need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 • Is \texttt{if} two variables \texttt{i} and \texttt{f}?
 • Is \texttt{==} two equal signs \texttt{=} \texttt{=}?
Regular Languages

• There are several formalisms for specifying tokens

• *Regular languages* are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A *language* Λ over Σ is a set of strings of characters drawn from Σ

$(\Sigma$ is called the *alphabet* of $\Lambda)$
Examples of Languages

- **Alphabet = English characters**
- **Language = English sentences**
- Not every string on English characters is an English sentence

- **Alphabet = ASCII**
- **Language = C programs**
- Note: ASCII character set is different from English character set
Notation

• Languages are sets of strings

• Need some notation for specifying which sets of strings we want our language to contain

• The standard notation for regular languages is regular expressions
Atomic Regular Expressions

• Single character

\['c' = \{ "c" \} \]

• Epsilon

\[\varepsilon = \{ "\"\"\"\" \} \]
Compound Regular Expressions

- **Union**

 \[
 A + B = \{ s \mid s \in A \text{ or } s \in B \}
 \]

- **Concatenation**

 \[
 AB = \{ ab \mid a \in A \text{ and } b \in B \}
 \]

- **Iteration**

 \[
 A^* = \bigcup_{i \geq 0} A^i \quad \text{where} \quad A^i = A \ldots i \text{ times} \ldots A
 \]
Regular Expressions

- **Def.** The *regular expressions over* Σ *are the smallest set of expressions including*

 - ε
 - 'c' where $c \in \Sigma$
 - $A + B$ where A, B are rexp over Σ
 - AB
 - A^* where A is a rexp over Σ
Syntax vs. Semantics

• To be careful, we should distinguish syntax and semantics (meaning) of regular expressions

\[L(\varepsilon) = \{ "\" \} \]
\[L('c') = \{ "c" \} \]
\[L(A + B) = L(A) \cup L(B) \]
\[L(AB) = \{ ab \mid a \in L(A) \text{ and } b \in L(B) \} \]
\[L(A^*) = \bigcup_{i \geq 0} L(A^i) \]
Example: Keyword

Keyword: "else" or "if" or "begin" or ...

'else' + 'if' + 'begin' + ...

Note: 'else' abbreviates 'e"l"s"e'
Example: Integers

Integer: a non-empty string of digits

digit = '0'+'1'+ '2'+ '3'+ '4'+ '5'+ '6'+ '7'+ '8'+ '9'
integer = digit digit*

Abbreviation: $A^+ = AA^*$
Example: Identifier

Identifier: *strings of letters or digits, starting with a letter*

letter = 'A' +...+'Z'+'a'+...+'z'
identifier = letter (letter + digit)*

Is (letter* + digit*) the same?
Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

\((\ ' \ + \ 'n' + \ 't')^+ \)
Example 1: Phone Numbers

- Regular expressions are all around you!
- Consider +46(0)18-471-1056

\[\Sigma = \text{digits} \cup \{+, -, (,)\} \]

- country = digit digit
- city = digit digit
- univ = digit digit digit
- extension = digit digit digit digit

phone_num = ‘+’country’(’0‘)’city’–’univ’–’extension
Example 2: Email Addresses

- Consider $kostis@it.uu.se$

\[
\Sigma = \text{letters } \cup \{.,@\} \\
\text{name} = \text{letter}^+ \\
\text{address} = \text{name }'@'\text{ name }'.\text{name }'.\text{name}
\]
Summary

• Regular expressions describe many useful languages
• Regular languages are a language specification
 - We still need an implementation

• Next: Given a string s and a regular expression R, is

 $$s \in L(R)?$$

• A yes/no answer is not enough!
• Instead: partition the input into tokens
• We will adapt regular expressions to this goal
Implementation of Lexical Analysis
Outline

- Specifying lexical structure using regular expressions

- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

- Implementation of regular expressions
 \[\text{RegExp} \Rightarrow \text{NFA} \Rightarrow \text{DFA} \Rightarrow \text{Tables} \]
Notation

- For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

- Union: $A + B \equiv A \mid B$
- Option: $A + \varepsilon \equiv A?$
- Range: `'a'+`b'+`...+`z' $\equiv [a-z]$
- Excluded range:

 complement of $[a-z] \equiv [^a-zA-Z]$
1. Select a set of tokens
 - Integer, Keyword, Identifier, LeftPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 - Integer = digit +
 - Keyword = ‘if’ + ‘else’ + ...
 - Identifier = letter (letter + digit)*
 - LeftPar = ‘(’
 - ...

Regular Expressions ⇒ Lexical Specifications
3. Construct R, a regular expression matching all lexemes for all tokens

$$R = \text{Keyword} + \text{Identifier} + \text{Integer} + \ldots$$
$$= R_1 + R_2 + R_3 + \ldots$$

Facts: If $s \in L(R)$ then s is a lexeme
- Furthermore $s \in L(R_i)$ for some “i”
- This “i” determines the token that is reported
Regular Expressions ⇒ Lexical Specifications

4. Let input be $x_1 \ldots x_n$
 - $(x_1 \ldots x_n$ are characters in the language alphabet)
 - For $1 \leq i \leq n$ check
 $$x_1 \ldots x_i \in L(R)$$

5. It must be that
 $$x_1 \ldots x_i \in L(R_j)$$ for some i and j
 (if there is a choice, pick a smallest such j)

6. Report token j, remove $x_1 \ldots x_i$ from input and go to step 4
How to Handle Spaces and Comments?

1. We could create a token *Whitespace*

 \[
 \text{Whitespace} = (\ ' ' + \ 'n' + \ 't')^+ \]

 • We could also add comments in there
 • An input " \t\n 555 " is transformed into
 \[
 \text{Whitespace Integer Whitespace} \]

2. Lexical analyzer skips spaces (preferred)

 • Modify step 5 from before as follows:
 It must be that \(x_k \ldots x_i \in L(R_j) \) for some \(j \) such that \(x_1 \ldots x_{k-1} \in L(\text{Whitespace}) \)
 • Parser is not bothered with spaces
Ambiguities (1)

• There are ambiguities in the algorithm

• How much input is used? What if
 • $x_1...x_i \in L(R)$ and also $x_1...x_K \in L(R)$

• The “maximal munch” rule: Pick the longest possible substring that matches R
Ambiguities (2)

- Which token is used? What if
 - \(x_1...x_i \in L(R_j) \) and also \(x_1...x_i \in L(R_k) \)
- Rule: use rule listed first (\(j \) if \(j < k \))

- Example:
 - \(R_1 = \text{Keyword} \) and \(R_2 = \text{Identifier} \)
 - “if” matches both
 - Treats “if” as a keyword not an identifier
Error Handling

• What if
 No rule matches a prefix of input?
• Problem: Can’t just get stuck …
• Solution:
 – Write a rule matching all “bad” strings
 – Put it last

• Lexical analysis tools allow the writing of:
 \[R = R_1 + \ldots + R_n + \text{Error} \]
 – Token \text{Error} matches if nothing else matches
Summary

• Regular expressions provide a concise notation for string patterns
• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
• Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

- Regular expressions for specification
- Finite automata for implementation
 (automatic generation of lexical analyzers)
Finite Automata

A finite automaton is a **recognizer** for the strings of a regular language

A finite automaton consists of

- A finite input alphabet Σ
- A set of states S
- A start state s_0
- A set of accepting states $F \subseteq S$
- A set of transitions $\delta: S \times \Sigma \rightarrow S$
Finite Automata

- Transition
 \[s_1 \rightarrow^a s_2 \]

- Is read
 In state \(s_1 \) on input “a” go to state \(s_2 \)

- If end of input
 - If in accepting state \(\Rightarrow \) accept

- Otherwise
 - If no transition possible \(\Rightarrow \) reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

• A finite automaton that accepts only "1"

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0,1\}
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?
And Another Example

• Alphabet still \{ 0, 1 \}

• The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state
Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input
Deterministic and Non-Deterministic Automata

- **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves

- **Non-deterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

- Finite automata have finite memory
 - Enough to only encode the current state
Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

• An NFA can get into multiple states

• Input: \(1\ 0\ 1\)

• Rule: NFA accepts an input if it \textit{can} get in a final state
NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of languages (regular languages)

• DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

- DFA can be exponentially larger than NFA (contrary to what is shown in the above example)
Regular Expressions to Finite Automata

• High-level sketch

- Regular expressions
- Lexical Specification
- Table-driven Implementation of DFA

NFA

DFA
Regular Expressions to NFA (1)

• For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

 ![Diagram](image)

 i.e. our automata have one start and one accepting state

• For ε

 ![Diagram](image)

• For input a

 ![Diagram](image)
Regular Expressions to NFA (2)

• For AB

• For $A + B$
Regular Expressions to NFA (3)

• For A^*
Example of Regular Expression → NFA conversion

• Consider the regular expression

\[(1+0)^*1\]

• The NFA is

![NFA diagram](image-url)
NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow^a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 - considering ε-moves as well
NFA to DFA. Remark

- An NFA may be in many states at any time

- How many different states?

- If there are N states, the NFA must be in some subset of those N states

- How many subsets are there?
 - $2^N - 1 = \text{finitely many}$
NFA to DFA Example
Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

- DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as lex, ML-Lex, flex or jlex

- But, DFAs can be huge

- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
Theory vs. Practice

Two differences:

- DFAs *recognize* lexemes. A lexer must return a *type of acceptance* (token type) rather than simply an accept/reject indication.

- DFAs consume the complete string and accept or reject it. A lexer must *find* the end of the lexeme in the input stream and then find the *next* one, etc.