
Introduction to Lexical

Analysis

2

Outline

•

Informal sketch of lexical analysis
–

Identifies tokens in input string

•

Issues in lexical analysis
–

Lookahead

–

Ambiguities

•

Specifying lexical analyzers (lexers)
–

Regular expressions

–

Examples of regular expressions

3

Lexical Analysis

•

What do we want to do? Example:
if (i == j)
then

z = 0;
else

z = 1;

•

The input is just a string of characters:
if (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Goal: Partition input string into substrings
–

where the substrings are tokens

–

and classify them according to their role

4

What’s a Token?

•

A syntactic category
–

In English:

noun, verb, adjective, …

–

In a programming language:
Identifier, Integer, Keyword, Whitespace, …

5

Tokens

•

Tokens correspond to sets of strings
–

these sets depend on the programming language

•

Identifier: strings of letters or digits,
starting with a letter

•

Integer: a non-empty string of digits
•

Keyword: “else” or “if” or “begin” or …

•

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

6

What are Tokens Used for?

•

Classify program substrings according to role

•

Output of lexical analysis is a stream of
tokens . . .

•

. . . which is input to the parser

•

Parser relies on token distinctions
–

An identifier is treated differently than a keyword

7

Designing a Lexical Analyzer: Step 1

•

Define a finite set of tokens
–

Tokens describe all items of interest

–

Choice of tokens depends on language, design of
parser

•

Recall
if (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace,

(,), =, ;

8

Designing a Lexical Analyzer: Step 2

•

Describe which strings belong to each token

•

Recall:
–

Identifier: strings of letters or digits, starting
with a letter

–

Integer: a non-empty string of digits
–

Keyword: “else” or “if” or “begin” or …

–

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

9

Lexical Analyzer: Implementation

An implementation must do two things:

1.

Recognize substrings corresponding to tokens

2.

Return the value or lexeme

of the token
–

The lexeme is the substring

10

Example

•

Recall:
if (i == j)\nthen\n\tz

= 0;\n\telse\n\t\tz = 1;

•

Token-lexeme groupings:
–

Identifier: i, j, z

–

Keyword: if, then, else
–

Relation: ==

–

Integer: 0, 1
–

(,), =, ;

single character of the same name

11

Why do Lexical Analysis?

•

Dramatically simplify parsing
–

The lexer usually discards “uninteresting”

tokens

that don’t contribute to parsing
•

E.g. Whitespace, Comments

–

Converts data early
•

Separate out logic to read source files
–

Potentially an issue on multiple platforms

–

Can optimize reading code independently of parser

12

True Crimes of Lexical Analysis

•

Is it as easy as it sounds?

•

Not quite!

•

Look at some programming language history . . .

13

Lexical Analysis in FORTRAN

•

FORTRAN rule: Whitespace is insignificant

•

E.g., VAR1 is the same as VA R1

FORTRAN whitespace rule was motivated by inaccuracy
of punch card operators

14

A terrible design! Example

•

Consider
– DO 5 I = 1,25
– DO 5 I = 1.25

•

The first is DO 5 I = 1 , 25
•

The second is DO5I = 1.25

•

Reading left-to-right, the lexical analyzer
cannot tell if DO5I is a variable or a DO
statement until after “,”

is reached

15

Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1.

The goal is to partition the string
–

This is implemented by reading left-to-right,
recognizing one token at a time

2.

“Lookahead”

may be required to decide where one
token ends and the next token begins
–

Even our simple example has lookahead issues

i vs. if
= vs. ==

16

Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes

17

More Modern True Crimes in Scanning

Nested template declarations in C++

vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))

18

Review

•

The goal of lexical analysis is to
–

Partition the input string into lexemes (the smallest
program units that are individually meaningful)

–

Identify the token of each lexeme

•

Left-to-right scan ⇒

lookahead sometimes
required

19

Next

•

We still need
–

A way to describe the lexemes of each token

–

A way to resolve ambiguities
•

Is if two variables i and f?

•

Is == two equal signs = =?

20

Regular Languages

•

There are several formalisms for specifying
tokens

•

Regular languages are the most popular
–

Simple and useful theory

–

Easy to understand
–

Efficient implementations

21

Languages

Def. Let Σ

be a set of characters. A language Λ
 over Σ

is a set of strings of characters drawn

from Σ
(Σ

is called the alphabet of Λ)

22

Examples of Languages

•

Alphabet = English
characters

•

Language = English
sentences

•

Not every string on
English characters is an
English sentence

•

Alphabet = ASCII

•

Language = C programs

•

Note: ASCII character
set is different from
English character set

23

Notation

•

Languages are sets of strings

•

Need some notation for specifying which sets
of strings we want our language to contain

•

The standard notation for regular languages is
regular expressions

24

Atomic Regular Expressions

•

Single character

•

Epsilon

{ }' ' " "c c=

{ }""ε =

25

Compound Regular Expressions

•

Union

•

Concatenation

•

Iteration

{ }| or A B s s A s B+ = ∈ ∈

{ }| and AB ab a A b B= ∈ ∈

*
0

 where ... times ...i i
i

A A A A i A
≥

= =U

26

Regular Expressions

•

Def.

The regular expressions over Σ

are the
smallest set of expressions including

*

' ' where
where , are rexp over
" " "
where is a rexp over

c c
A B A B
AB
A A

ε
∈∑

+ ∑

∑

27

Syntax vs. Semantics

•

To be careful, we should distinguish syntax
and semantics (meaning)

of regular expressions

{ }

*
0

() ""
(' ') {" "}
() () ()
() { | () and ()}
() ()i

i

L
L c c
L A B L A L B
L AB ab a L A b L B
L A L A

ε

≥

=
=

+ = ∪
= ∈ ∈
= U

28

Example: Keyword

Keyword: “else” or “if” or “begin” or …

else' + 'if' + 'begi' n' + L

Note: abbrev'else' 'e''l''siates ''e'

29

Example: Integers

Integer: a non-empty string of digits

*

digit '0 ' '1' '2 ' '3' '4 ' '5 ' '6 ' '7 ' '8 ' '9 '
integer = digit digit

= + + + + + + + + +

*Abbreviation: A AA+ =

30

Example: Identifier

Identifier: strings of letters or digits,
starting with a letter

*

letter = 'A' 'Z' 'a' 'z'
identifier = letter (letter digit)

+ + + + +
+

K K

* *(letter + diIs the sgit) ame?

31

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

()' ' + '\n' + '\t' +

32

Example 1: Phone Numbers

•

Regular expressions are all around you!
•

Consider +46(0)18-471-1056

Σ

= digits ∪

{+,−,(,)}
country = digit digit
city = digit digit
univ = digit digit digit
extension = digit digit digit digit
phone_num = ‘+’country’(’0‘)’city’−’univ’−’extension

33

Example 2: Email Addresses

•

Consider kostis@it.uu.se

{ }
+name = letter

address = name '@' name '.'

letters

name '.

'

.,@

name

∑ = ∪

34

Summary

•

Regular expressions describe many useful
languages

•

Regular languages are a language specification
–

We still need an implementation

•

Next: Given a string s and a regular
expression R, is

•

A yes/no answer is not enough!
•

Instead: partition the input into tokens

•

We will adapt regular expressions to this goal

()?s L R∈

Implementation of Lexical Analysis

36

Outline

•

Specifying lexical structure using regular
expressions

•

Finite automata
–

Deterministic Finite Automata (DFAs)

–

Non-deterministic Finite Automata (NFAs)

•

Implementation of regular expressions
RegExp

⇒ NFA ⇒

DFA ⇒

Tables

37

Notation

•

For convenience, we will use a variation (we will
allow user-defined abbreviations)

in regular

expression notation

•

Union: A + B ≡

A | B
•

Option: A + ε ≡ A?

•

Range: ‘a’+’b’+…+’z’

≡

[a-z]
•

Excluded range:

complement of [a-z] ≡

[^a-z]

38

Regular Expressions ⇒

Lexical Specifications

1.

Select a set of tokens
•

Integer, Keyword, Identifier, LeftPar, ...

2.

Write a regular expression (pattern) for the
lexemes of each token
•

Integer

= digit +

•

Keyword

= ‘if’

+

‘else’

+

…
•

Identifier

= letter (letter + digit)*

•

LeftPar

=

‘(‘
•

…

39

Regular Expressions ⇒

Lexical Specifications

3. Construct R, a regular expression matching all
lexemes for all tokens

R = Keyword

+ Identifier

+ Integer

+ …
= R1

+ R2

+ R3

+ …

Facts: If s ∈

L(R)

then s

is a lexeme
–

Furthermore s ∈

L(Ri

)

for some “i”
–

This “i”

determines the token that is reported

40

Regular Expressions ⇒

Lexical Specifications

4.

Let input be x1

…xn
•

(x1

... xn

are characters in the language alphabet)
•

For 1 ≤

i ≤

n

check

x1

…xi

∈

L(R)

?

5.

It must be that
x1

…xi

∈

L(Rj

)

for some i

and j
(if there is a choice, pick a smallest such j)

6.

Report token j, remove x1…xi

from input and
go to step 4

41

How to Handle Spaces and Comments?

1.

We could create a token Whitespace
Whitespace

= (‘

’

+ ‘\n’

+ ‘\t’)+

•

We could also add comments in there
•

An input " \t\n 555 "

is transformed into

Whitespace Integer Whitespace
2.

Lexical analyzer skips spaces (preferred)
•

Modify step 5 from before as follows:
It must be that xk

... xi

∈

L(Rj

)

for some j

such
that x1

... xk-1

∈

L(Whitespace)
•

Parser is not bothered with spaces

42

Ambiguities (1)

•

There are ambiguities in the algorithm

•

How much input is used? What if
•

x1

…xi

∈

L(R)

and also x1

…xK

∈

L(R)

•

The “maximal munch”

rule: Pick the longest
possible substring that matches R

43

Ambiguities (2)

•

Which token is used? What if
•

x1

…xi

∈

L(Rj

)

and also x1

…xi

∈

L(Rk

)

•

Rule: use rule listed first (j

if j < k)

•

Example:
–

R1

= Keyword

and R2

= Identifier
–

“if”

matches both

–

Treats “if”

as a keyword not an identifier

44

Error Handling

•

What if
No rule matches a prefix of input ?

•

Problem: Can’t just get stuck …
•

Solution:
–

Write a rule matching all “bad”

strings

–

Put it last
•

Lexical analysis tools allow the writing of:
R = R1

+ ... + Rn

+ Error
–

Token Error

matches if nothing else matches

45

Summary

•

Regular expressions provide a concise notation
for string patterns

•

Use in lexical analysis requires small extensions
–

To resolve ambiguities

–

To handle errors
•

Good algorithms known (next)
–

Require only single pass over the input

–

Few operations per character (table lookup)

46

Regular Languages & Finite Automata

Basic formal language theory result:
Regular expressions and finite automata both
define the class of regular languages.

Thus, we are going to use:
•

Regular expressions for specification

•

Finite automata for implementation
(automatic generation of lexical analyzers)

47

Finite Automata

A finite automaton is a recognizer for the
strings of a regular language

A finite automaton consists of
–

A finite input alphabet Σ

–

A set of states S
–

A start state n

–

A set of accepting states F ⊆

S
–

A set of transitions state →input

state

48

Finite Automata

•

Transition
s1

→a

s2
•

Is read

In state s1

on input “a”

go to state s2

•

If end of input
–

If in accepting state ⇒ accept

•

Otherwise
–

If no transition possible ⇒ reject

49

Finite Automata State Graphs

•

A state

•

The start state

•

An accepting state

•

A transition
a

50

A Simple Example

•

A finite automaton that accepts only “1”

•

A finite automaton accepts a string if we can
follow transitions labeled with the characters
in the string from the start to some accepting
state

1

51

Another Simple Example

•

A finite automaton accepting any number of 1’s
followed by a single 0

•

Alphabet: {0,1}

0

1

52

And Another Example

•

Alphabet {0,1}
•

What language does this recognize?

0

1

0

1

0

1

53

And Another Example

•

Alphabet still { 0, 1 }

•

The operation of the automaton is not
completely defined by the input
–

On input “11”

the automaton could be in either state

1

1

54

Epsilon Moves

•

Another kind of transition: ε-moves

ε

•

Machine can move from state A to state B
without reading input

A B

55

Deterministic and Non-Deterministic Automata

•

Deterministic Finite Automata (DFA)
–

One transition per input per state

–

No ε-moves
•

Non-deterministic Finite Automata (NFA)
–

Can have multiple transitions for one input in a
given state

–

Can have ε-moves
•

Finite automata have finite memory
–

Enough to only encode the current state

56

Execution of Finite Automata

•

A DFA can take only one path through the
state graph
–

Completely determined by input

•

NFAs

can choose
–

Whether to make ε-moves

–

Which of multiple transitions for a single input to
take

57

Acceptance of NFAs

•

An NFA can get into multiple states

•

Input:

0

1

1
0

1 0 1

•

Rule: NFA accepts an input if it can

get in a
final state

58

NFA vs. DFA (1)

•

NFAs

and DFAs

recognize the same set of
languages (regular languages)

•

DFAs

are easier to implement
–

There are no choices to consider

59

NFA vs. DFA (2)

•

For a given language the NFA can be simpler
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

•

DFA can be exponentially larger than NFA
(contrary to what is shown in the above example)

60

Regular Expressions to Finite Automata

•

High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

61

Regular Expressions to NFA (1)

•

For each kind of reg. expr, define an NFA
–

Notation: NFA for regular expression M

i.e. our automata have one

start and one

accepting state

M

•

For ε
ε

•

For input a a

62

Regular Expressions to NFA (2)

•

For AB

A Bε

•

For A + B

A

B

ε
ε

ε

ε

63

Regular Expressions to NFA (3)

•

For A*

Aε

ε

ε

64

Example of Regular Expression →

NFA conversion

•

Consider the regular expression
(1+0)*1

•

The NFA is

ε

1C E
0D F

ε

ε
B

ε

ε
G

ε

ε

ε

A H 1I J

65

NFA to DFA. The Trick

•

Simulate the NFA
•

Each state of DFA
= a non-empty subset of states of the NFA

•

Start state
= the set of NFA states reachable through ε-moves

from NFA start state
•

Add a transition S →a S’

to DFA iff

–

S’

is the set of NFA states reachable from any
 state in S after seeing the input a

•

considering ε-moves as well

66

NFA to DFA. Remark

•

An NFA may be in many states at any time

•

How many different states ?

•

If there are N states, the NFA must be in
some subset of those N states

•

How many subsets are there?
–

2N

-

1 = finitely many

67

NFA to DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

68

Implementation

•

A DFA can be implemented by a 2D table T
–

One dimension is “states”

–

Other dimension is “input symbols”
–

For every transition Si

→a Sk

define T[i,a] = k

•

DFA “execution”
–

If in state Si

and input a, read T[i,a] = k and skip to
state Sk

–

Very efficient

69

Table Implementation of a DFA

S

T

U

0

1

0

10 1

0 1
S T U
T T U
U T U

70

Implementation (Cont.)

•

NFA → DFA conversion is at the heart of
tools such as lex,

ML-Lex,

flex

or jlex

•

But, DFAs

can be huge

•

In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations

71

Theory vs. Practice

Two differences:

•

DFAs recognize lexemes. A lexer

must return
a type of acceptance (token type) rather than
simply an accept/reject indication.

•

DFAs

consume the complete string and accept
or reject it. A lexer

must find the end of the

lexeme in the input stream and then find the
next one, etc.

	Introduction to Lexical Analysis
	Outline
	Lexical Analysis
	What’s a Token?
	Tokens
	What are Tokens Used for?
	Designing a Lexical Analyzer: Step 1
	Designing a Lexical Analyzer: Step 2
	Lexical Analyzer: Implementation
	Example
	Why do Lexical Analysis?
	True Crimes of Lexical Analysis
	Lexical Analysis in FORTRAN
	A terrible design! Example
	Lexical Analysis in FORTRAN. Lookahead.
	Another Great Moment in Scanning History
	More Modern True Crimes in Scanning
	Review
	Next
	Regular Languages
	Languages
	Examples of Languages
	Notation
	Atomic Regular Expressions
	Compound Regular Expressions
	Regular Expressions
	Syntax vs. Semantics
	Example: Keyword
	Example: Integers
	Example: Identifier
	Example: Whitespace
	Example 1: Phone Numbers
	Example 2: Email Addresses
	Summary
	Implementation of Lexical Analysis
	Outline
	Notation
	Regular Expressions  Lexical Specifications
	Regular Expressions  Lexical Specifications
	Regular Expressions  Lexical Specifications
	How to Handle Spaces and Comments?
	Ambiguities (1)
	Ambiguities (2)
	Error Handling
	Summary
	Regular Languages & Finite Automata
	Finite Automata
	Finite Automata
	Finite Automata State Graphs
	A Simple Example
	Another Simple Example
	And Another Example
	And Another Example
	Epsilon Moves
	Deterministic and Non-Deterministic Automata
	Execution of Finite Automata
	Acceptance of NFAs
	NFA vs. DFA (1)
	NFA vs. DFA (2)
	Regular Expressions to Finite Automata
	Regular Expressions to NFA (1)
	Regular Expressions to NFA (2)
	Regular Expressions to NFA (3)
	Example of Regular Expression → NFA conversion
	NFA to DFA. The Trick
	NFA to DFA. Remark
	NFA to DFA Example
	Implementation
	Table Implementation of a DFA
	Implementation (Cont.)
	Theory vs. Practice

