Abstract Syntax Trees & Top-Down Parsing

Review of Parsing

- Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree
- Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes $\underline{how} s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees (Cont.)

- Consider the grammar $E \rightarrow int | (E) | E + E$
- And the string 5 + (2 + 3)
- After lexical analysis (a list of tokens) int₅ '+' '(' int₂ '+' int₃ ')'
- During parsing we build a parse tree ...

Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But <u>abstracts</u> from the concrete syntax
 → more compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ASTs
- Each grammar symbol may have <u>attributes</u>
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an <u>action</u>
 - Written as: $X \rightarrow Y_1 \dots Y_n$ { action }
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar $E \rightarrow int | E + E | (E)$
- For each symbol X define an attribute X.val
 - For terminals, val is the associated lexeme
 - For non-terminals, val is the expression's value (which is computed from values of subexpressions)
- We annotate the grammar with actions:
 - $\begin{array}{ll} \mathsf{E} \rightarrow \mathsf{int} & \{ \mathsf{E}.\mathsf{val} = \mathsf{int}.\mathsf{val} \} \\ & | \ \mathsf{E}_1 + \mathsf{E}_2 & \{ \mathsf{E}.\mathsf{val} = \mathsf{E}_1.\mathsf{val} + \mathsf{E}_2.\mathsf{val} \} \\ & | \ (\mathsf{E}_1) & \{ \mathsf{E}.\mathsf{val} = \mathsf{E}_1.\mathsf{val} \} \end{array}$

Semantic Actions: An Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: int₅ '+' '(' int₂ '+' int₃ ')'

Productions

 $E \rightarrow E_1 + E_2$ $E_1 \rightarrow int_5$ $E_2 \rightarrow (E_3)$ $E_3 \rightarrow E_4 + E_5$ $E_4 \rightarrow int_2$ $E_5 \rightarrow int_3$

<u>Equations</u>

E.val = E_1 .val + E_2 .val E_1 .val = int_5 .val = 5 E_2 .val = E_3 .val E_3 .val = E_4 .val + E_5 .val E_4 .val = int_2 .val = 2 E_5 .val = int_3 .val = 3

Semantic Actions: Dependencies

Semantic actions specify a system of equations

- Order of executing the actions is not specified
- Example:

 E_3 .val = E_4 .val + E_5 .val

- Must compute E_4 .val and E_5 .val before E_3 .val
- We say that E_3 .val depends on E_4 .val and E_5 .val
- The parser must find the order of evaluation

Dependency Graph

- Each node labeled with a non-terminal E has one slot for its val attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up
- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal

Semantic Actions: Notes (Cont.)

- <u>Synthesized</u> attributes
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order
- Grammars with only synthesized attributes are called <u>S-attributed</u> grammars
 - Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree
- Example: a line calculator

A Line Calculator

- Each line contains an expression $E \rightarrow int | E + E$
- Each line is terminated with the = sign $L \rightarrow E = | + E =$
- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines $P \rightarrow \epsilon \mid P L$

Attributes for the Line Calculator

- Each E has a synthesized attribute val
 Calculated as before
- Each L has a synthesized attribute val
 L → E = {L.val = E.val }
 | + E = {L.val = E.val + L.prev }
- We need the value of the previous line
- We use an inherited attribute L.prev

Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute val
 - The value of its last line
 - $P \rightarrow \varepsilon \qquad \{ P.val = 0 \} \\ | P_1 L \qquad \{ P.val = L.val; \\ L.prev = P_1.val \}$
- Each L has an inherited attribute prev
 - L.prev is inherited from sibling P_1 .val
- Example ...

Example of Inherited Attributes

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called <u>syntax-directed translation</u>
 - Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

Constructing a Parse Tree

 $|(E_1)|$

- We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int.lexval is the value of the integer lexeme
 - Computed using semantic actions
 - $E \rightarrow int \{ E.ast = mkleaf(int.lexval) \}$
 - $| E_1 + E_2 \qquad \{ E.ast = mkplus(E_1.ast, E_2.ast) \}$
 - { E.ast = E₁.ast }

Parse Tree Example

- Consider the string $int_5 + ('int_2 + int_3)'$
- A bottom-up evaluation of the ast attribute:
 E.ast = mkplus(mkleaf(5), mkplus(mkleaf(2), mkleaf(3))

Review of Abstract Syntax Trees

- We can specify language syntax using CFG
- A parser will answer whether $s \in L(G)$
- ... and will build a parse tree
- ... which we convert to an AST
- ... and pass on to the rest of the compiler
- Next two & a half lectures:
 How do we answer s ∈ L(G) and build a parse tree?
- After that: from AST to assembly language

Second-Half of Lecture: Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- These slides: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators

Introduction to Top-Down Parsing

 Terminals are seen in order of appearance in the token stream:

 $t_2 t_5 t_6 t_8 t_9$

- The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing: Example

- Consider the grammar $E \rightarrow T + E \mid T$ $T \rightarrow (E) \mid int \mid int * T$
- Token stream is: $int_5 * int_2$
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing: Example (Cont.)

• Try $E_0 \rightarrow T_1 + E_2$

Token stream: int₅ * int₂

 $E \rightarrow T + E \mid T$

 $T \rightarrow (E)$ | int | int * T

- Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int_5
- Try $T_1 \rightarrow int$. Token matches.
 - But + after T_1 does not match input token *
- Try $T_1 \rightarrow int * T_2$
 - This will match and will consume the two tokens.
 - Try $T_2 \rightarrow int$ (matches) but + after T_1 will be unmatched
 - Try $T_2 \rightarrow int * T_3$ but * does not match with end-of-input
- Has exhausted the choices for T_1
 - Backtrack to choice for E_0

Recursive Descent Parsing: Example (Cont.)

- Try $E_0 \rightarrow T_1$ Token stream: int₅ * int₂
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow int_5 * T_2$ and $T_2 \rightarrow int_2$
 - With the following parse tree

Recursive Descent Parsing: Notes

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- But does not always work ...

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S$ a bool $S_1() \{ \text{ return } S() \&\& \text{ term}(a); \}$ bool $S() \{ \text{ return } S_1(); \}$
- S() will get into an infinite loop
- A left-recursive grammar has a non-terminal S $S \rightarrow^+ S \alpha$ for some α
- Recursive descent does not work in such cases
 - It goes into an infinite loop

Elimination of Left Recursion

- Consider the left-recursive grammar $S \rightarrow S \alpha \mid \beta$
- S generates all strings starting with a β and followed by any number of $\alpha's$
- The grammar can be rewritten using rightrecursion

 $S \rightarrow \beta S'$ $S' \rightarrow \alpha S' \mid \varepsilon$

More Elimination of Left-Recursion

• In general

 $\textbf{S} \rightarrow \textbf{S} \; \alpha_1 \mid ... \mid \textbf{S} \; \alpha_n \mid \beta_1 \mid ... \mid \beta_m$

- All strings derived from S start with one of β_1, \dots, β_m and continue with several instances of $\alpha_1, \dots, \alpha_n$
- Rewrite as

 $S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$ $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \varepsilon$

General Left Recursion

- The grammar $S \rightarrow A \alpha \mid \delta$ $A \rightarrow S \beta$ is also left-recursive because $S \rightarrow^{+} S \beta \alpha$
- This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of productions
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions $E \rightarrow T + E \mid T$ $T \rightarrow (E) \mid int \mid int * T$
- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before it is used for predictive parsing

Left-Factoring Example

- Recall the grammar $E \rightarrow T + E \mid T$ $T \rightarrow (E) \mid int \mid int * T$
- Factor out common prefixes of productions $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$
- This grammar is equivalent to the original one

LL(1) Parsing Table Example

- Left-factored grammar $E \rightarrow T X$ $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$
- The LL(1) parsing table (\$ is the end marker):

	int	*	+	()	\$
E	ТХ			ТΧ		
X			+ E		3	3
Т	int Y			(E)		
У		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \to T \, X$ "
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only in a derivation in which Y $\rightarrow \ \epsilon$

LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal X
 - We look at the next token a
 - And chose the production shown at [X,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Example

Stack	Input	Action	
E \$	int * int \$	ТХ	
ТХ\$	int * int \$	int Y	
int Y X \$	int * int \$	terminal	
У X \$	* int \$	* T	
* T X \$	* int \$	terminal	
ТХ\$	int \$	int Y	
int Y X \$	int \$	terminal	
У X \$	\$	3	
X \$	\$	3	
\$	\$	ACCEPT	
	-		

			-			
	int	*	+	()	\$
Е	ТΧ			ТΧ		
X			+ E		3	3
Т	int Y			(E)		
У		* T	3		3	3

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- where no table entry is multiply defined
- Once we have the table
 - The parsing is simple and fast
 - No backtracking is necessary
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line of A do we place α ?
- In the column of t where t can start a string derived from $\boldsymbol{\alpha}$
 - $\alpha \rightarrow^* \dagger \beta$
 - We say that $t \in First(\alpha)$
- In the column of t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A \dagger \delta$
 - We say $t \in Follow(A)$

Computing First Sets

Definition

 $\mathsf{First}(\mathsf{X}) = \{ \mathsf{t} \mid \mathsf{X} \to^* \mathsf{t}\alpha \} \cup \{ \varepsilon \mid \mathsf{X} \to^* \varepsilon \}$

Algorithm sketch

- 1. First(t) = { t }
- 2. $\varepsilon \in First(X)$ if $X \to \varepsilon$ is a production
- 3. $\varepsilon \in First(X)$ if $X \rightarrow A_1 \dots A_n$

and $\epsilon \in \text{First}(A_i)$ for each $1 \le i \le n$

4. First(α) \subseteq First(X) if X \rightarrow A₁ ... A_n α

and $\varepsilon \in \text{First}(A_i)$ for each $1 \le i \le n$

Computing First Sets

Definition

 $\mathsf{First}(\mathsf{X}) = \{ \mathsf{t} \mid \mathsf{X} \to^* \mathsf{t}\alpha \} \cup \{ \varepsilon \mid \mathsf{X} \to^* \varepsilon \}$

More constructive algorithm

- 1. First(t) = { t }
- 2. For all productions $X \rightarrow A_1 \dots A_n$
 - Add First(A_1) { ε } to First(X). Stop if $\varepsilon \notin$ First(A_1).
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin First(A_2)$.
 - •
 - Add First(A_n) { ϵ } to First(X). Stop if $\epsilon \notin First(A_n)$.
 - Add {ε} to First(X).

First Sets: Example

- Recall the grammar $E \rightarrow T X$ $T \rightarrow (E) \mid int Y$
- First sets

First(() = { (}
First()) = {) }
First(int) = { int }
First(+) = { + }
First(*) = { * }

 $\begin{array}{c} X \rightarrow + E \mid \epsilon \\ Y \rightarrow * T \mid \epsilon \end{array}$

```
First( T ) = { int, ( }
First( E ) = { int, ( }
First( X ) = { +, ε }
First( Y ) = { *, ε }
```

Computing Follow Sets

• Definition

$\mathsf{Follow}(\mathsf{X}) = \{ \mathsf{t} \mid \mathsf{S} \to^* \beta \mathsf{X} \mathsf{t} \delta \}$

- Intuition
 - If $X \rightarrow A B$ then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - Also if $B \rightarrow^* \varepsilon$ then Follow(X) \subseteq Follow(A)
 - If S is the start symbol then $\$ \in Follow(S)$

Computing Follow Sets (Cont.)

Algorithm sketch

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X)

For each production $A \rightarrow \alpha \times \beta$

3. Follow(A) \subseteq Follow(X)

For each production $A \rightarrow \alpha \times \beta$ where $\varepsilon \in \text{First}(\beta)$

Computing Follow Sets (Cont.)

Definition

. . .

$\mathsf{Follow}(\mathsf{X}) = \{ \mathsf{t} \mid \mathsf{S} \to^* \beta \mathsf{X} \mathsf{t} \delta \}$

More constructive algorithm

- 1. First compute the First sets for all non-terminals
- 2. If S is the start symbol, add \$ to Follow(S)
- 3. For all productions $Y \rightarrow \dots X A_1 \dots A_n$
 - Add First(A_1) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_1)$.
 - Add First(A_2) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_2)$.
 - Add First(A_n) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_n)$.
 - Add Follow(Y) to Follow(X).

Follow Sets: Example

- Recall the grammar $E \rightarrow T X$ $T \rightarrow (E) \mid int Y$
- Follow sets

 $\begin{array}{c} X \to + E \mid \epsilon \\ Y \to * T \mid \epsilon \end{array}$

Follow(+) = { int, (} Follow(*) = { int, (} Follow(() = { int, (} Follow(E) = {), \$ } Follow(X) = { \$,) } Follow(T) = { +,), \$ } Follow()) = { +,), \$ } Follow(Y) = { +,), \$ } Follow(int) = { *, +,), \$ }

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do T[A, t] = α
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do $T[A, t] = \alpha$
 - If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do $T[A, \$] = \alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

 For some grammars there is a simple parsing strategy

Predictive parsing (LL(1))

• Next time: a more powerful parsing strategy