Abstract Syntax Trees
&
Top-Down Parsing
Review of Parsing

- Given a language \(L(G) \), a parser consumes a sequence of tokens \(s \) and produces a parse tree.
- Issues:
 - How do we recognize that \(s \in L(G) \)?
 - A parse tree of \(s \) describes how \(s \in L(G) \).
 - Ambiguity: more than one parse tree (possible interpretation) for some string \(s \).
 - Error: no parse tree for some string \(s \).
 - How do we construct the parse tree?
Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Trees (Cont.)

• Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]

• And the string
 \[5 + (2 + 3) \]

• After lexical analysis (a list of tokens)
 \[\text{int}_5 \, '+' \, '(' \, \text{int}_2 \, '+' \, \text{int}_3 \, ')' \]

• During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - more compact and easier to use
- An important data structure in a compiler
Semantic Actions

• This is what we will use to construct ASTs

• Each grammar symbol may have **attributes**
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an **action**
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \) \{ action \}
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

• Consider the grammar
 \[E \rightarrow \text{int} \mid E + E \mid (E) \]

• For each symbol X define an attribute \(X \cdot \text{val} \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression’s value
 (which is computed from values of subexpressions)

• We annotate the grammar with actions:

 \[
 \begin{align*}
 E \rightarrow \text{int} & \quad \{ E.\text{val} = \text{int}.\text{val} \} \\
 | \text{E}_1 + \text{E}_2 & \quad \{ E.\text{val} = \text{E}_1.\text{val} + \text{E}_2.\text{val} \} \\
 | (\text{E}_1) & \quad \{ E.\text{val} = \text{E}_1.\text{val} \}
 \end{align*}
 \]
Semantic Actions: An Example (Cont.)

- String: \(5 + (2 + 3)\)
- Tokens: int\(_5\) '+' '(' int\(_2\) '+' int\(_3\) ')

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow E_1 + E_2)</td>
<td>(E.val = E_1.val + E_2.val)</td>
</tr>
<tr>
<td>(E_1 \rightarrow \text{int}_5)</td>
<td>(E_1.val = \text{int}_5.val = 5)</td>
</tr>
<tr>
<td>(E_2 \rightarrow (E_3))</td>
<td>(E_2.val = E_3.val)</td>
</tr>
<tr>
<td>(E_3 \rightarrow E_4 + E_5)</td>
<td>(E_3.val = E_4.val + E_5.val)</td>
</tr>
<tr>
<td>(E_4 \rightarrow \text{int}_2)</td>
<td>(E_4.val = \text{int}_2.val = 2)</td>
</tr>
<tr>
<td>(E_5 \rightarrow \text{int}_3)</td>
<td>(E_5.val = \text{int}_3.val = 3)</td>
</tr>
</tbody>
</table>
Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

• Example:
 \[E_3.val = E_4.val + E_5.val \]
 - Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 - We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)

• The parser must find the order of evaluation
Each node labeled with a non-terminal E has one slot for its val attribute

Note the dependencies
Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

• **Synthesized** attributes
 - Calculated from attributes of descendents in the parse tree
 - \texttt{E.val} is a synthesized attribute
 - Can always be calculated in a bottom-up order

• **Grammars with only synthesized attributes are called** \textit{S-attributed} grammars
 - Most frequent kinds of grammars
Inherited Attributes

• Another kind of attributes
• Calculated from attributes of the parent node(s) and/or siblings in the parse tree

• Example: a line calculator
A Line Calculator

• Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
• Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
• In the second form, the value of evaluation of the previous line is used as starting value
• A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P L \]
Attributes for the Line Calculator

- Each \(E \) has a synthesized attribute \(\text{val} \)
 - Calculated as before
- Each \(L \) has a synthesized attribute \(\text{val} \)
 \[
 L \rightarrow E = \begin{cases}
 L.\text{val} = E.\text{val} \\
 L.\text{val} = E.\text{val} + L.\text{prev}
 \end{cases}
 \]
- We need the value of the previous line
- We use an inherited attribute \(L.\text{prev} \)
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 - The value of its last line

 $P \to \varepsilon \quad \{ \ P.\text{val} = 0 \}$

 $| \ P_1 L \quad \{ \ P.\text{val} = L.\text{val};$

 $\quad L.\text{prev} = P_1.\text{val} \}$

• Each L has an inherited attribute prev
 - $L.\text{prev}$ is inherited from sibling $P_1.\text{val}$

• Example ...
Example of Inherited Attributes

- val synthesized
- prev inherited
- All can be computed in depth-first order
Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 – Also used for type checking, code generation, ...

• Process is called syntax-directed translation
 – Substantial generalization over CFGs
Constructing an AST

- We first define the AST data type.
- Consider an abstract tree type with two constructors:

\[
\text{mkleaf}(n) = \begin{array}{c}
\end{array}
\]

\[
\text{mkplus}(T_1, T_2) = \begin{array}{c}
\end{array}
\]
Constructing a Parse Tree

- We define a synthesized attribute \(\text{ast} \)
 - Values of \(\text{ast} \) values are ASTs
 - We assume that \(\text{int}.\text{lexval} \) is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \{ \ E.\text{ast} = \text{mkleaf}(\text{int}.\text{lexval}) \ \}
| \ E_1 + E_2 \quad \{ \ E.\text{ast} = \text{mkplus}(E_1.\text{ast}, E_2.\text{ast}) \ \}
| \ (E_1) \quad \{ \ E.\text{ast} = E_1.\text{ast} \ \}
\]
Parse Tree Example

• Consider the string int5 ' + ' (int2 ' + ' int3 ')
• A bottom-up evaluation of the ast attribute:

$$E.\text{ast} = \text{mkplus}(\text{mkleaf}(5), \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3)))$$

```
PLUS

PLUS

5

PLUS

2

3
```
Review of Abstract Syntax Trees

• We can specify language syntax using CFG
• A parser will answer whether \(s \in L(G) \)
• ... and will build a parse tree
• ... which we convert to an AST
• ... and pass on to the rest of the compiler

• Next two & a half lectures:
 - How do we answer \(s \in L(G) \) and build a parse tree?
• After that: from AST to assembly language
Second-Half of Lecture: Outline

• Implementation of parsers
• Two approaches
 - Top-down
 - Bottom-up
• These slides: Top-Down
 - Easier to understand and program manually
• Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

• Terminals are seen in order of appearance in the token stream:
 \[t_2 \ t_5 \ t_6 \ t_8 \ t_9 \]

• The parse tree is constructed
 - From the top
 - From left to right

```
A
  \[ t_2 \ B \ t_9 \]
  \[ C \]
  \[ \]
  \[ t_5 \ t_6 \ t_8 \]
```
Recursive Descent Parsing: Example

- Consider the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \times T \]
- Token stream is: \(\text{int}_5 \times \text{int}_2 \)
- Start with top-level non-terminal \(E \)

- Try the rules for \(E \) in order
Recursive Descent Parsing: Example (Cont.)

- Try $E_0 \rightarrow T_1 + E_2$
- Then try a rule for $T_1 \rightarrow (E_3)$
 - But $($ does not match input token int_5
- Try $T_1 \rightarrow int$. Token matches.
 - But $+$ after T_1 does not match input token $*$
- Try $T_1 \rightarrow int * T_2$
 - This will match and will consume the two tokens.
 - Try $T_2 \rightarrow int$ (matches) but $+$ after T_1 will be unmatched
 - Try $T_2 \rightarrow int * T_3$ but $*$ does not match with end-of-input
- Has exhausted the choices for T_1
 - Backtrack to choice for E_0

Token stream: $int_5 * int_2$

$$E \rightarrow T + E \mid T$$
$$T \rightarrow (E) \mid int \mid int * T$$
Recursive Descent Parsing: Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int}_5 \ast T_2$ and $T_2 \rightarrow \text{int}_2$
 - With the following parse tree

```
E_0
  |  
  T_1
    |  
    int_5 * 
    T_2
      |  
      int_2
```

Token stream: $\text{int}_5 \ast \text{int}_2$

Production rules:

- $E \rightarrow T + E \mid T$
- $T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T$
Recursive Descent Parsing: Notes

- Easy to implement by hand

- Somewhat inefficient (due to backtracking)

- But does not always work ...
Consider a production $S \rightarrow S \alpha$

```c
bool S_1() { return S() && term(a); } 
bool S() { return S_1(); } 
```

- $S()$ will get into an infinite loop

- A left-recursive grammar has a non-terminal S

 $S \rightarrow^* S\alpha$ for some α

- Recursive descent does not work in such cases
 - It goes into an infinite loop
Elimination of Left Recursion

- Consider the left-recursive grammar
 \[S \rightarrow S \alpha | \beta \]

- \(S \) generates all strings starting with a \(\beta \) and followed by any number of \(\alpha \)'s

- The grammar can be rewritten using right-recursion
 \[S \rightarrow \beta S' \]
 \[S' \rightarrow \alpha S' | \epsilon \]
More Elimination of Left-Recursion

• In general

\[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

\[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]
\[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \varepsilon \]
General Left Recursion

• The grammar

\[S \rightarrow A \alpha | \delta \]
\[A \rightarrow S \beta \]

is also left-recursive because

\[S \rightarrow^+ S \beta \alpha \]

• This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]
Summary of Recursive Descent

• Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically

• Unpopular because of backtracking
 - Thought to be too inefficient

• In practice, backtracking is eliminated by restricting the grammar
Predictive Parsers

• Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking

• Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used
LL(1) Languages

• In recursive-descent, for each non-terminal and input token there may be a choice of productions
• LL(1) means that for each non-terminal and token there is only one production that could lead to success
• Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

• Recall the grammar for arithmetic expressions
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

• Hard to predict because
 - For \(T \) two productions start with \text{int}
 - For \(E \) it is not clear how to predict

• A grammar must be left-factored before it is used for predictive parsing
Left-Factoring Example

• Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} * T \]

• Factor out common prefixes of productions
 \[E \rightarrow T X \]
 \[X \rightarrow + E \mid \epsilon \]
 \[T \rightarrow (E) \mid \text{int} Y \]
 \[Y \rightarrow * T \mid \epsilon \]

• This grammar is equivalent to the original one
LL(1) Parsing Table Example

• Left-factored grammar

\[
\begin{align*}
E & \rightarrow TX & X & \rightarrow + E & | & \epsilon \\
T & \rightarrow (E) & | & \text{int } Y & \quad Y & \rightarrow * T & | & \epsilon
\end{align*}
\]

• The LL(1) parsing table ($$ is the end marker):

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+E</td>
<td>ε</td>
<td>ε</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
<td></td>
</tr>
</tbody>
</table>
• **Consider the \([E, \text{int}]\) entry**
 - “When current non-terminal is \(E\) and next input is \(\text{int}\), use production \(E \rightarrow T X\) ”
 - This production can generate an \(\text{int}\) in the first place

• **Consider the \([Y,+]\) entry**
 - “When current non-terminal is \(Y\) and current token is +, get rid of \(Y\)”
 - \(Y\) can be followed by + only in a derivation in which \(Y \rightarrow \epsilon\)”
LL(1) Parsing Tables: Errors

• Blank entries indicate error situations
 - Consider the \([E,\ast]\) entry
 - “There is no way to derive a string starting with \(\ast\) from non-terminal \(E\)”
Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal X
 - We look at the next token a
 - And chose the production shown at $[X,a]$
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input
LL(1) Parsing Algorithm

initialize stack ← <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] == Y_1…Y_n
 then stack ← <Y_1…Y_n rest>;
 else error();
 <t, rest> : if t == *next++
 then stack ← <rest>;
 else error();
 until stack == <>
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

The input is `int * int` and the parsing table is shown below:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>+E</td>
<td></td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td>(E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* T</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
<td></td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

• LL(1) languages are those defined by a parsing table for the LL(1) algorithm
• where no table entry is multiply defined

• Once we have the table
 - The parsing is simple and fast
 - No backtracking is necessary

• We want to generate parsing tables from CFG
Constructing Parsing Tables (Cont.)

• If $A \rightarrow \alpha$, where in the line of A do we place α?
• In the column of t where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in \text{First}(\alpha)$
• In the column of t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in \text{Follow}(A)$
Computing First Sets

Definition

\[
\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha\} \cup \{\varepsilon \mid X \rightarrow^* \varepsilon\}
\]

Algorithm sketch

1. \(\text{First}(t) = \{ t \}\)
2. \(\varepsilon \in \text{First}(X)\) if \(X \rightarrow \varepsilon\) is a production
3. \(\varepsilon \in \text{First}(X)\) if \(X \rightarrow A_1 \ldots A_n\)

 and \(\varepsilon \in \text{First}(A_i)\) for each \(1 \leq i \leq n\)
4. \(\text{First}(\alpha) \subseteq \text{First}(X)\) if \(X \rightarrow A_1 \ldots A_n \alpha\)

 and \(\varepsilon \in \text{First}(A_i)\) for each \(1 \leq i \leq n\)
Computing First Sets

Definition

\[
\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \}
\]

More constructive algorithm

1. \(\text{First}(\varepsilon) = \{ \varepsilon \} \)

2. For all productions \(X \rightarrow A_1 \ldots A_n \)
 - Add \(\text{First}(A_1) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_1) \).
 - Add \(\text{First}(A_2) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_2) \).
 - ...
 - Add \(\text{First}(A_n) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_n) \).
 - Add \(\{ \varepsilon \} \) to \(\text{First}(X) \).
First Sets: Example

• Recall the grammar

\[
\begin{align*}
E & \rightarrow T X \\
T & \rightarrow (E) \mid \text{int } Y \\
X & \rightarrow + E \mid \varepsilon \\
Y & \rightarrow * T \mid \varepsilon
\end{align*}
\]

• First sets

\[
\begin{align*}
\text{First}(()) & = \{ () \} \\
\text{First}(()) & = \{ () \} \\
\text{First}(\text{int }) & = \{ \text{int } \} \\
\text{First}(+) & = \{ + \} \\
\text{First}(*) & = \{ * \}
\end{align*}
\]

\[
\begin{align*}
\text{First}(T) & = \{ \text{int}, () \} \\
\text{First}(E) & = \{ \text{int}, () \} \\
\text{First}(X) & = \{ +, \varepsilon \} \\
\text{First}(Y) & = \{ *, \varepsilon \}
\end{align*}
\]
Computing Follow Sets

• **Definition**

 \[
 \text{Follow}(X) = \{ \tau \mid S \rightarrow^* \beta X \tau \delta \}
 \]

• **Intuition**

 - If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \)
 and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)

 - Also if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)

 - If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)
Computing Follow Sets (Cont.)

Algorithm sketch

1. $\$ \in \text{Follow}(S)$

2. $\text{First}(\beta) - \{\varepsilon\} \subseteq \text{Follow}(X)$

 For each production $A \rightarrow \alpha X \beta$

3. $\text{Follow}(A) \subseteq \text{Follow}(X)$

 For each production $A \rightarrow \alpha X \beta$ where $\varepsilon \in \text{First}(\beta)$
Computing Follow Sets (Cont.)

Definition

\[
\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta X \rightarrow \delta \}
\]

More constructive algorithm

1. First compute the First sets for all non-terminals.
2. If \(S \) is the start symbol, add $ to \text{Follow}(S).
3. For all productions \(Y \rightarrow \ldots X A_1 \ldots A_n \)
 - Add \(\text{First}(A_1) - \{ \varepsilon \} \) to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_1) \).
 - Add \(\text{First}(A_2) - \{ \varepsilon \} \) to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_2) \).
 - \(\ldots \)
 - Add \(\text{First}(A_n) - \{ \varepsilon \} \) to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_n) \).
 - Add \(\text{Follow}(Y) \) to \text{Follow}(X).
Follow Sets: Example

- Recall the grammar

\[
E \rightarrow T X \\
T \rightarrow (E) | \text{int} \ Y \\
X \rightarrow + E | \varepsilon \\
Y \rightarrow * T | \varepsilon
\]

- Follow sets

\[
\begin{align*}
\text{Follow}(+)) &= \{ \text{int}, (\} \\
\text{Follow}(\ast)) &= \{ \text{int}, (\} \\
\text{Follow}(()) &= \{ \text{int}, (\} \\
\text{Follow}(E) &= \{), $ \} \\
\text{Follow}(X) &= \{ $,) \} \\
\text{Follow}(T) &= \{ +,), $ \} \\
\text{Follow}(Y) &= \{ +,), $ \} \\
\text{Follow}(\text{int}) &= \{ *, +,), $ \}
\end{align*}
\]
Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in \text{First}(\alpha)$ do
 $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do
 $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$$ \in \text{Follow}(A)$ do
 $T[A, \$$] = \alpha$
Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well

• Most programming language grammars are not LL(1)

• There are tools that build LL(1) tables
Review

• For some grammars there is a simple parsing strategy
 Predictive parsing (LL(1))

• Next time: a more powerful parsing strategy