LR Parsing
LALR Parser Generators
Outline

• Review of bottom-up parsing

• Computing the parsing DFA

• Using parser generators
Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string to the start symbol.
• The state of the parser is described as
 \[\alpha \mid \gamma \]
 - \(\alpha \) is a stack of terminals and non-terminals
 - \(\gamma \) is the string of terminals not yet examined

• Initially: \(\mid x_1 x_2 \ldots x_n \)
The Shift and Reduce Actions (Review)

Recall the CFG: \(E \rightarrow E + (E) \mid \text{int} \)

A bottom-up parser uses two kinds of actions:

- **Shift** pushes a terminal from input on the stack
 \[
 E + (\text{int}) \Rightarrow E + (\text{int})
 \]

- **Reduce** pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)
 \[
 E + (E + (E)\mid) \Rightarrow E + (E)\mid
 \]
Key Issue: When to Shift or Reduce?

• Idea: use a deterministic finite automaton (DFA) to decide when to shift or reduce
 - The input is the stack
 - The language consists of terminals and non-terminals

• We run the DFA on the stack and we examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then shift
 - If X is labeled with “$A \rightarrow \beta$ on tok” then reduce
LR(1) Parsing: An Example

```
E → int
int E + (int) + (int)$ shift
int E + (int) + (int)$ shift (x3)
E + (int) + (int)$ E → int
E + (E + (int)) + (int)$ shift
E + (E + (int))$ E → E+(E)
E + (int)$ shift (x3)
E + (E + (int))$ E → int
E + (E + (int))$ shift
E + (int)$ shift
E + (E + (int))$ E → E+(E)
```

Diagram:

```
0 → int
E
1
E → int
E on $, +

2 +
3 E
4 ( int)
5 E
6 ( int)
7 E → E + (E)
8 E
9 +
10 E
11 E → E + (E)
```
Representing the DFA

- Parsers represent the DFA as a 2D table (Recall table-driven lexical analysis)
- Lines correspond to DFA states
- Columns correspond to terminals and non-terminals
- Typically columns are split into:
 - Those for terminals: the action table
 - Those for non-terminals: the goto table
Representing the DFA: Example

The table for a fragment of our DFA:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>+</th>
<th>()</th>
<th>$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>s5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r_E \rightarrow \text{int}</td>
<td>r_E \rightarrow \text{int}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>s8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r_E \rightarrow \text{E+(E)}</td>
<td>r_E \rightarrow \text{E+(E)}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sk is shift and goto state k
r_X \rightarrow \alpha is reduce
gk is goto state k
The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
 - This is wasteful, since most of the work is repeated

- To avoid this, we remember for each stack element on which state it brings the DFA

- LR parser maintains a stack
 $$\langle \text{sym}_1, \text{state}_1 \rangle \ldots \langle \text{sym}_n, \text{state}_n \rangle$$
 state\textsubscript{k} is the final state of the DFA on sym\textsubscript{1} ... sym\textsubscript{k}
let I = w$ be initial input
let j = 0
let DFA state 0 be the start state
let stack = ⟨dummy, 0⟩
repeat
 case action[top_state(stack), I[j]] of
 shift k: push⟨I[j++], k⟩
 reduce X → A:
 pop |A| pairs,
 push⟨X, goto[top_state(stack), X]⟩
 accept: halt normally
 error: halt and report error
Key Issue: How is the DFA Constructed?

• The stack describes the context of the parse
 - What non-terminal we are looking for
 - What production RHS we are looking for
 - What we have seen so far from the RHS

• Each DFA state describes several such contexts
 - E.g., when we are looking for non-terminal \(E \), we might be looking either for an \(\text{int} \) or an \(E + (E) \) RHS
LR(0) Items

• An LR(0) item is a production with a “ϵ” somewhere on the RHS.

• The LR(0) items for $T \rightarrow (E)$ are
 - $T \rightarrow \epsilon \ (E)$
 - $T \rightarrow (\epsilon E)$
 - $T \rightarrow (E \epsilon)$
 - $T \rightarrow (E) \epsilon$

• The only LR(0) item for $X \rightarrow \epsilon$ is $X \rightarrow \epsilon$
LR(0) Items: Intuition

• An item \([X \rightarrow \alpha | \beta]\) says that the parser
 - is looking for an \(X\)
 - has an \(\alpha\) on top of the stack
 - expects to find a string derived from \(\beta\) next in the input

• Notes:
 - \([X \rightarrow \alpha | a\beta]\) means that \(a\) should follow
 • Then we can shift it and still have a viable prefix
 - \([X \rightarrow \alpha |]\) means that we could reduce \(X\)
 • But this is not always a good idea!
LR(1) Items

• An LR(1) item is a pair:
 \[X \rightarrow \alpha \mid \beta, \ a \]
 - \(X \rightarrow \alpha \beta \) is a production
 - \(a \) is a terminal (the lookahead terminal)
 - LR(1) means 1 lookahead terminal

• \([X \rightarrow \alpha \mid \beta, \ a]\) describes a context of the parser
 - We are trying to find an \(X \) followed by an \(a \), and
 - We have (at least) \(\alpha \) already on top of the stack
 - Thus we need to see next a prefix derived from \(\beta a \)
Note

• The symbol I was used before to separate the stack from the rest of input
 - $\alpha I \gamma$, where α is the stack and γ is the remaining string of terminals
• In items, I is used to mark a prefix of a production RHS:
 $$X \rightarrow \alpha I \beta, \quad \alpha$$
 - Here β might contain non-terminals as well
• In either case the stack is on the left of I
Convention

• We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
 - Where E is the old start symbol

• The initial parsing context contains:

 $S \rightarrow \text{I E ,}$ $\$

 - Trying to find an S as a string derived from $E\$ $
 $ - The stack is empty
LR(1) Items (Cont.)

• In context containing $E \rightarrow E + (E), +$
 - If (follows then we can perform a shift to context containing $E \rightarrow E + (E), +$

• In context containing $E \rightarrow E + (E), +$
 - We can perform a reduction with $E \rightarrow E + (E)$
 - But only if a + follows
LR(1) Items (Cont.)

• Consider the item
 \[E \rightarrow E + (1E), + \]
• We expect a string derived from \[E + \]
• Our example has two productions for \[E \]
 \[E \rightarrow \text{int} \quad \text{and} \quad E \rightarrow E + (E) \]
• We describe this by extending the context with two more items:
 \[E \rightarrow 1\text{int},) \]
 \[E \rightarrow 1E +(E),) \]
The Closure Operation

- The operation of extending the context with items is called the closure operation.

\[
\text{Closure}(\text{Items}) = \\
\text{repeat} \\
\quad \text{for each } [X \rightarrow \alpha | Y\beta, a] \text{ in Items} \\
\quad \text{for each production } Y \rightarrow \gamma \\
\quad \text{for each } b \text{ in First}(\beta a) \\
\quad \text{add } [Y \rightarrow I \gamma, b] \text{ to Items} \\
\quad \text{until Items is unchanged}
\]
Constructing the Parsing DFA (1)

• Construct the start context:

 $\text{Closure}({S \rightarrow I \ E \ , \$})$

 \[
 \begin{align*}
 S & \rightarrow I \ E \ , \$ \\
 E & \rightarrow I \ E+(E) \ , \$ \\
 E & \rightarrow I \ int \ , \$ \\
 E & \rightarrow I \ E+(E) \ , + \\
 E & \rightarrow I \ int \ , +
 \end{align*}
 \]

• We abbreviate as:

 \[
 \begin{align*}
 S & \rightarrow I \ E \ , \$ \\
 E & \rightarrow I \ E+(E) \ , \$/+ \\
 E & \rightarrow I \ int \ , \$/+
 \end{align*}
 \]
Constructing the Parsing DFA (2)

• A DFA state is a closed set of LR(1) items

• The start state contains \([S \rightarrow I \ E , \$]\)

• A state that contains \([X \rightarrow \alpha I, b]\) is labeled with “reduce with \(X \rightarrow \alpha\) on \(b\)”

• And now the transitions …
The DFA Transitions

- A state "State" that contains \([X \rightarrow \alpha \mid y\beta, b]\) has a transition labeled \(y\) to a state that contains the items "Transition(State, y)"
 - \(y\) can be a terminal or a non-terminal

```plaintext
Transition(State, y)
Items = ∅
for each \([X \rightarrow \alpha \mid y\beta, b]\) in State
  add \([X \rightarrow \alpha y \mid \beta, b]\) to Items
return Closure(Items)
```
Constructing the Parsing DFA: Example

\[S \rightarrow \text{int } E, \, $ \]
\[E \rightarrow \text{int } E+\text(E), \, $/+ \]
\[E \rightarrow \text{int }, \, $/+ \]

\[E \rightarrow \text{int } \]
\[E \rightarrow \text{int } \]
\[E \rightarrow \text{int } \]
\[E \rightarrow \text{int } \]
\[E \rightarrow \text{int } \]
\[E \rightarrow \text{int } \]
\[E \rightarrow \text{int } \]

0
1
2
3
4
5
6

and so on...
LR Parsing Tables: Notes

- Parsing tables (i.e., the DFA) can be constructed automatically for a CFG

- But we still need to understand the construction to work with parser generators
 - E.g., they report errors in terms of sets of items

- What kind of errors can we expect?
Shift/Reduce Conflicts

• If a DFA state contains both
 \([X \rightarrow \alpha \mid a \beta, b]\) and \([Y \rightarrow \gamma \mid, a]\)

• Then on input “a” we could either
 - Shift into state \([X \rightarrow \alpha a \mid \beta, b]\), or
 - Reduce with \(Y \rightarrow \gamma\)

• This is called a shift-reduce conflict
Shift/Reduce Conflicts

• Typically due to ambiguities in the grammar
• Classic example: the **dangling else**
 \[S \rightarrow \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \text{OTHER} \]
• Will have DFA state containing
 \[[S \rightarrow \text{if } E \text{ then } S \mid, \text{else}] \]
 \[[S \rightarrow \text{if } E \text{ then } S \mid \text{else } S, \ x] \]
• If **else** follows then we can shift or reduce
• Default (**yacc, ML-yacc, bison**, etc.) is to shift
 - Default behavior is as needed in this case
More Shift/Reduce Conflicts

- **Consider the ambiguous grammar**
 \[E \rightarrow E + E \mid E \ast E \mid \text{int} \]

 - **We will have the states containing**
 \[
 [E \rightarrow E \ast I \ E, +] \quad [E \rightarrow E \ast E I, +]
 [E \rightarrow I E + E, +] \quad \Rightarrow^E \quad [E \rightarrow E I + E, +]
 \]

 - **Again we have a shift/reduce on input +**
 - We need to reduce (* binds more tightly than +)
 - Recall solution: declare the precedence of * and +
More Shift/Reduce Conflicts

• In yacc declare precedence and associativity:
 \%left +
 \%left *

• Precedence of a rule = that of its last terminal
 See yacc manual for ways to override this default

• Resolve shift/reduce conflict with a shift if:
 - no precedence declared for either rule or terminal
 - input terminal has higher precedence than the rule
 - the precedences are the same and right associative
Using Precedence to Solve S/R Conflicts

• Back to our example:

\[E \rightarrow E * I E, + \] \quad [E \rightarrow E * I E, +] \n\[E \rightarrow I E + E, + \] \quad \Rightarrow^E \quad [E \rightarrow E I + E, +] \n
... \quad ... \n
• Will choose reduce because precedence of rule \(E \rightarrow E * E \) is higher than of terminal +
Using Precedence to Solve S/R Conflicts

- Same grammar as before
 \[E \rightarrow E \cdot E \mid E \star E \mid \text{int} \]

- We will also have the states

 \[
 \begin{align*}
 [E \rightarrow E + I \cdot E, +] & \quad [E \rightarrow E + I E, +] \\
 [E \rightarrow I E + E, +] & \rightarrow^E [E \rightarrow E I + E, +] \\
 \ldots & \quad \ldots
 \end{align*}
 \]

- Now we also have a shift/reduce on input +
 - We choose reduce because \(E \rightarrow E + E \) and + have the same precedence and + is left-associative
Using Precedence to Solve S/R Conflicts

• Back to our dangling else example
 \[S \rightarrow \text{if } E \text{ then } S \mid, \text{ else} \]
 \[S \rightarrow \text{if } E \text{ then } S \mid \text{ else } S, \ x \]

• Can eliminate conflict by declaring \textit{else} having higher precedence than \textit{then}

• But this starts to look like “hacking the tables”

• Best to avoid overuse of precedence declarations or we will end with unexpected parse trees
Precedence Declarations Revisited

The term “precedence declaration” is misleading!

These declarations do not define precedence: they define conflict resolutions
 I.e., they instruct shift-reduce parsers to resolve conflicts in certain ways
 These two are not quite the same!
Reduce/Reduce Conflicts

• If a DFA state contains both

 \[X \rightarrow \alpha \, i, \, a \] and \[Y \rightarrow \beta \, i, \, a \]

 - Then on input “a” we don’t know which production to reduce

• This is called a reduce/reduce conflict
Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the grammar
• Example: a sequence of identifiers

\[S \rightarrow \varepsilon \mid id \mid id \ S \]

• There are two parse trees for the string \(id \)

\[S \rightarrow id \]

\[S \rightarrow id \ S \rightarrow id \]

• How does this confuse the parser?
More on Reduce/Reduce Conflicts

• Consider the states

 \[
 \begin{align*}
 [S' \rightarrow I S, \, \$] & \quad [S \rightarrow id \, I \, S, \, \$] \\
 [S \rightarrow I, \, \$] & \Rightarrow^{id} \quad [S \rightarrow I, \, \$] \\
 [S \rightarrow I \, id, \, \$] & \quad [S \rightarrow I \, id, \, \$] \\
 [S \rightarrow I \, id \, S, \, \$] & \quad [S \rightarrow I \, id \, S, \, \$]
 \end{align*}
 \]

• Reduce/reduce conflict on input \$
 \begin{align*}
 S' \rightarrow S \rightarrow id \\
 S' \rightarrow S \rightarrow id \, S \rightarrow id
 \end{align*}

• Better to rewrite the grammar as: \(S \rightarrow \varepsilon \mid id \, S \)
Using Parser Generators

- Parser generators automatically construct the parsing DFA given a CFG
 - Use precedence declarations and default conventions to resolve conflicts
 - The parser algorithm is the same for all grammars (and is provided as a library function)

- But most parser generators do not construct the DFA as described before
 - Because the LR(1) parsing DFA has 1000s of states even for a simple language
LR(1) Parsing Tables are Big

- But many states are similar, e.g.

\[
E \rightarrow \text{int } 1, \$/+ \\
E \rightarrow \text{int } \text{on } $, + \\
E \rightarrow \text{int } 1,)/+ \\
E \rightarrow \text{int } \text{on }), +
\]

- Idea: merge the DFA states whose items differ only in the lookahead tokens
 - We say that such states have the same core

- We obtain

\[
E \rightarrow \text{int } 1, $/+/) \\
E \rightarrow \text{int } \text{on } $, +,)
\]
The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals

- Example: the core of
 \[\{[X \rightarrow \alpha \mid \beta, b], [Y \rightarrow \gamma \mid \delta, d]\}\]

 is

 \[\{X \rightarrow \alpha \mid \beta, \ Y \rightarrow \gamma \mid \delta\}\]
LALR States

• Consider for example the LR(1) states
 \[\{[X \to \alpha I, a], [Y \to \beta I, c]\}\]
 \[\{[X \to \alpha I, b], [Y \to \beta I, d]\}\]
• They have the same core and can be merged
• The merged state contains:
 \[\{[X \to \alpha I, a/b], [Y \to \beta I, c/d]\}\]
• These are called **LALR(1)** states
 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)
A LALR(1) DFA

• Repeat until all states have distinct core
 - Choose two distinct states with same core
 - Merge the states by creating a new one with the union of all the items
 - Point edges from predecessors to new state
 - New state points to all the previous successors

```
A → B → C
D → E → F
```

```
A → C
D → F
```

```
BE
```

```
A → C
D → F
```
Conversion LR(1) to LALR(1): Example.
The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states
 \[
 \{[X \rightarrow \alpha \ I, a], [Y \rightarrow \beta \ I, b]\}
 \{[X \rightarrow \alpha \ I, b], [Y \rightarrow \beta \ I, a]\}
 \]
- And the merged LALR(1) state
 \[
 \{[X \rightarrow \alpha \ I, a/b], [Y \rightarrow \beta \ I, a/b]\}
 \]
- Has a new reduce/reduce conflict
- In practice such cases are rare
LALR vs. LR Parsing: Things to keep in mind

• LALR languages are not natural
 - They are an efficiency hack on LR languages

• Any reasonable programming language has a LALR(1) grammar

• LALR(1) parsing has become a standard for programming languages and parser generators
A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in ML"