Global Optimization
Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis
Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
x &:= 42 \\
b &> 0 \\
y &:= z \times w \\
q &:= y + x \\
y &:= 0
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
x := 42 \\
b > 0 \\
y := z \times w \\
y := 0 \\
q := y + x
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[x := 42 \]
\[b > 0 \]
\[y := z * w \]
\[y := 0 \]
\[q := y + 42 \]
Correctness

• How do we know whether it is OK to globally propagate constants?

• There are situations where it is incorrect:

```
x := 42
b > 0
y := z * w
x := 54
q := y + x
```
Correctness (Cont.)

To replace a use of \(x \) by a constant \(k \) we must know that the following property ** holds:

\[
\text{On every path to the use of } x, \\
\text{the last assignment to } x \text{ is } x := k \quad **
\]
Example 1 Revisited

\[
x := 42 \\
b > 0 \\
y := z \times w \\
y := 0 \\
q := y + x
\]
Example 2 Revisited

x := 42
b > 0

y := z * w
x := 54

y := 0

q := y + x
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires *global analysis*
 - An analysis that determines how data flows over the entire control-flow graph of a function/method
Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property P at a particular point in program execution
- Proving P at any point requires knowledge of the entire function body
- Property P is typically undecidable!
- It is OK to be conservative: If the optimization requires P to be true, then want to know either
 - that P is definitely true, or
 - that we don’t know whether P is true

- It is always safe to say “don’t know”
 - We try to say do not know as rarely as possible
Global Analysis (Cont.)

- *Global dataflow analysis* is a standard technique for solving problems with these characteristics.

- *Global constant propagation* is one example of an optimization that requires global dataflow analysis.
Global Constant Propagation

- On every path to the use of x, the last assignment to x is $x := k$ **

- Global constant propagation can be performed at any point where property ** holds

- Consider the case of computing ** for a single variable x at all program points
Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with x at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>c</td>
<td>$x = \text{constant } c$</td>
</tr>
<tr>
<td>*</td>
<td>Don’t know whether x is a constant</td>
</tr>
</tbody>
</table>
Example
Using the Information

• Given global constant information, it is easy to perform the optimization
 – Simply inspect the $x = ?$ associated with a statement using x
 – If x is constant at that point replace that use of x by the constant

• But how do we compute the properties $x = ?$
The Analysis Idea

The analysis of a (complicated) program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

• The idea is to “push” or “transfer” information from one statement to the next

• For each statement \(s \), we compute information about the value of \(x \) immediately before and after \(s \)

\[C_{\text{in}}(x,s) = \text{value of } x \text{ before } s \]
\[C_{\text{out}}(x,s) = \text{value of } x \text{ after } s \]
Transfer Functions

- Define a **transfer function** that transfers information from one statement to another.

- In the following rules, let statement *s* have as immediate predecessors statements *p₁,…,pₙ*.

Rule 1

if $C_{out}(x, p_i) = *$ for any i, then $C_{in}(x, s) = *$
Rule 2

If $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$
then $C_{in}(x, s) = *$
Rule 3

\[
\text{if } C_{\text{out}}(x, p_i) = c \text{ or } \# \text{ for all } i, \\
\text{then } C_{\text{in}}(x, s) = c
\]
Rule 4

\[
\text{if } C_{\text{out}}(x, p_i) = \# \text{ for all } i, \\
\text{then } C_{\text{in}}(x, s) = \#
\]
The Other Half

• Rules 1-4 relate the out of one statement to the in of the successor statement
 - they propagate information forward across CFG edges

• We also need rules relating the in of a statement to the out of the same statement
 - to propagate information across statements
Rule 5

\[C_{\text{out}}(x, s) = \# \ \text{if} \ C_{\text{in}}(x, s) = \# \]
Rule 6

\[C_{\text{out}}(x, x := c) = c \text{ if } c \text{ is a constant} \]
Rule 7

\[C_{out}(x, x := f(\ldots)) = * \]

This rule says that we do not perform inter-procedural analysis (i.e. we do not look at what other functions do)
Rule 8

\[\text{if } x \neq y \]

\[\text{C}_{\text{out}}(x, y := \ldots) = \text{C}_{\text{in}}(x, y := \ldots) \text{ if } x \neq y \]
An Algorithm

1. For every entry s to the function, set $C_{in}(x, s) = *$

2. Set $C_{in}(x, s) = C_{out}(x, s) = \#$ everywhere else

3. Repeat until all points satisfy 1-8:
 Pick s not satisfying 1-8 and update using the appropriate rule
The Value #

To understand why we need #, look at a loop

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := y + x \]
\[q < b \]
• Consider the statement \(y := 0 \)

• To compute whether \(x \) is constant at this point, we need to know whether \(x \) is constant at the two predecessors
 - \(x := 42 \)
 - \(q := y + x \)

• But information for \(q := y + x \) depends on its predecessors, including \(y := 0 \)!
The Value # (Cont.)

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value # means “So far as we know, control never reaches this point”
Example

\begin{align*}
x &:= 42 \\
b &> 0 \\
y &:= z \times w \\
q &:= x + y \\
q &< b
\end{align*}
Example
Example

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := x + y \]
\[q < b \]
Example

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := x + y \]
\[q < b \]
Orderings

• We can simplify the presentation of the analysis by ordering the values
 \[\# < c < \ast \]

• Drawing a picture with “lower” values drawn lower, we get

```
*   
/ \  
/   
\   
\  /  
\#/ \  
  ...-1 0 1...
  ````

...
Orderings (Cont.)

• * is the greatest value, # is the least
 - All constants are in between and incomparable

• Let \textit{lub} be the least-upper bound in this ordering

• Rules 1-4 can be written using lub:
 \[C_{in}(x, s) = \text{lub} \{ C_{out}(x, p) \mid p \text{ is a predecessor of } s \} \]
Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that eventually we reach a point where nothing changes

• The use of lub explains why the algorithm terminates
 - Values start as # and only increase
 - # can change to a constant, and a constant to *
 - Thus, $C_\sim(x, s)$ can change at most twice
Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = // worst case

Number of $C_{(....)}$ values computed * 2 =

Number of program statements * 4
Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $x := 42$ is dead (assuming x is not used elsewhere)
Live and Dead Variables

• The first value of x is *dead* (never used)

• The second value of x is *live* (may be used)

• Liveness is an important concept for the compiler

$x := 42$

$x := 54$

$y := x$
Liveness

A variable x is live at statement s if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x
Global Dead Code Elimination

- A statement $x := \ldots$ is dead code if x is dead after the assignment

- Dead statements can be deleted from the program

- But we need liveness information first . . .
Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation.

- Liveness is simpler than constant propagation, since it is a boolean property (true or false).
Liveness Rule 1

\[L_{out}(x, p) = \lor \{ L_{in}(x, s) \mid s \text{ a successor of } p \} \]
Liveness Rule 2

\[L_{in}(x, s) = \text{true} \quad \text{if } s \text{ refers to } x \text{ on the RHS} \]
Liveness Rule 3

\[L_{in}(x, x := e) = \text{false} \text{ if } e \text{ does not refer to } x \]
Liveness Rule 4

\[L_{\text{in}}(x, s) = L_{\text{out}}(x, s) \] if \(s \) does not refer to \(x \)
Algorithm

1. Let all \(L(...) = \text{false} \) initially

2. Repeat until all statements \(s \) satisfy rules 1-4

 Pick \(s \) where one of 1-4 does not hold and update using the appropriate rule
Termination

• A value can change from false to true, but not the other way around

• Each value can change only once, so termination is guaranteed

• Once the analysis information is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We have seen two kinds of analysis:

• An analysis that enables constant propagation:
 - this is a *forwards* analysis: information is pushed from inputs to outputs

• An analysis that calculates variable liveness:
 - this is a *backwards* analysis: information is pushed from outputs back towards inputs
Global Flow Analyses

• There are many other global flow analyses

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules relating information between adjacent program points