Abstract Syntax Trees & Top-Down Parsing

Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree
- Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- **Abstract syntax trees**
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} | (E) | E + E \]
- And the string
 \[5 + (2 + 3) \]
- After lexical analysis (a list of tokens)
 \[\text{int}_5 \ ' + ' \ '(' \text{int}_2 \ '+' \text{int}_3 \ ')' \]
- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ASTs
- Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \) \{ action \}
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar
 \[E \rightarrow \text{int} | E + E | (E) \]
- For each symbol \(X \) define an attribute \(X\.val \)
 - For terminals, \(val \) is the associated lexeme
 - For non-terminals, \(val \) is the expression’s value (which is computed from values of subexpressions)
- We annotate the grammar with actions:
 \[
 \begin{align*}
 E &\rightarrow \text{int} & \{ E\.val = \text{int}.val \} \\
 | & E_1 + E_2 & \{ E\.val = E_1\.val + E_2\.val \} \\
 | & (E_1) & \{ E\.val = E_1\.val \}
 \end{align*}
 \]
Semantic Actions: An Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: int5 ' + ' (int2 ' + ' int3 ')'

Productions

- $E \rightarrow E_1 + E_2$
- $E_1 \rightarrow \text{int5}$
- $E_2 \rightarrow (E_3)$
- $E_3 \rightarrow E_4 + E_5$
- $E_4 \rightarrow \text{int2}$
- $E_5 \rightarrow \text{int3}$

Equations

- $E.val = E_1.val + E_2.val$
- $E_1.val = \text{int5}.val = 5$
- $E_2.val = E_3.val$
- $E_3.val = E_4.val + E_5.val$
- $E_4.val = \text{int2}.val = 2$
- $E_5.val = \text{int3}.val = 3$

Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

- Example:

 $E_3.val = E_4.val + E_5.val$
 - Must compute $E_4.val$ and $E_5.val$ before $E_3.val$
 - We say that $E_3.val$ depends on $E_4.val$ and $E_5.val$

- The parser must find the order of evaluation

Dependency Graph

- Each node labeled with a non-terminal E has one slot for its val attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up
- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

• **Synthesized attributes**
 - Calculated from attributes of descendents in the parse tree
 - \(E\.val \) is a synthesized attribute
 - Can always be calculated in a bottom-up order

• Grammars with only synthesized attributes are called **S-attributed grammars**
 - Most frequent kinds of grammars

Inherited Attributes

• Another kind of attributes
• Calculated from attributes of the parent node(s) and/or siblings in the parse tree

• Example: a line calculator

A Line Calculator

• Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
• Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
• In the second form, the value of evaluation of the previous line is used as starting value
• A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P L \]

Attributes for the Line Calculator

• Each \(E \) has a synthesized attribute \(\text{val} \)
 - Calculated as before
• Each \(L \) has a synthesized attribute \(\text{val} \)
 \[L \rightarrow E = \begin{cases} \text{L.val = E.val} \\ \mid + E = \begin{cases} \text{L.val = E.val + L.prev} \end{cases} \end{cases} \]
• We need the value of the previous line
• We use an inherited attribute \(\text{L.prev} \)
Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute val
 - The value of its last line
 \[P \rightarrow \varepsilon \quad \{ P.val = 0 \} \]
 \[| \quad \varepsilon P_1 L \quad \{ P.val = L.val; \]
 \[\quad L.prev = P_1.val \} \]

- Each L has an inherited attribute prev
 - L.prev is inherited from sibling P_1.val

- Example ...

Example of Inherited Attributes

- val synthesized
- prev inherited
- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

 \[
 \begin{align*}
 mkleaf(n) & = n \\
 mkplus(& ,) & = PLUS
 \end{align*}
 \]
Constructing a Parse Tree

• We define a synthesized attribute \textit{ast}
 - Values of \textit{ast} values are ASTs
 - We assume that \textit{int.lexval} is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \{ E.ast = \text{mkleaf}(\text{int.lexval}) \} \\
| \quad E_1 + E_2 \quad \{ E.ast = \text{mkplus}(E_1.ast, E_2.ast) \} \\
| \quad (E_1) \quad \{ E.ast = E_1.ast \}
\]

Parse Tree Example

• Consider the string \texttt{int}_5 \texttt{ '+ ' (' int}_2 \texttt{ '+ ' int}_3 \texttt{ ') '}
• A bottom-up evaluation of the \textit{ast} attribute:
 \[
 E.ast = \text{mkplus}(\text{mkleaf}(5), \\
 \text{mkplus}(\text{mkleaf}(2), \text{mkleaf}(3))
 \]

Review of Abstract Syntax Trees

• We can specify language syntax using CFG
• A parser will answer whether \(s \in L(G)\)
• ... and will build a parse tree
• ... which we convert to an AST
• ... and pass on to the rest of the compiler

• Next two & a half lectures:
 - How do we answer \(s \in L(G)\) and build a parse tree?
• After that: from AST to assembly language

Second-Half of Lecture: Outline

• Implementation of parsers
• Two approaches
 - Top-down
 - Bottom-up
• These slides: Top-Down
 - Easier to understand and program manually
• Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream: t_2, t_5, t_6, t_8, t_9
- The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing: Example

- Consider the grammar
 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow (E) \mid \text{int} \mid \text{int } T
 \]
- Token stream is: int$_5$ * int$_2$
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing: Example (Cont.)

- Try $E_0 \rightarrow T_1 + E_2$
- Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int$_5$
- Try $T_1 \rightarrow \text{int}$.
 - Token matches.
 - But + after T_1 does not match input token *
- Try $T_1 \rightarrow \text{int * T}_2$
 - This will match and will consume the two tokens.
 - Try $T_2 \rightarrow \text{int}$ (matches) but + after T_1 will be unmatched
 - Try $T_2 \rightarrow \text{int * T}_3$ but * does not match with end-of-input
- Has exhausted the choices for T_1
 - Backtrack to choice for E_0

Recursive Descent Parsing: Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int}_5 * T_2$ and $T_2 \rightarrow \text{int}_2$
 - With the following parse tree
Recursive Descent Parsing: Notes

• Easy to implement by hand
• Somewhat inefficient (due to backtracking)
• But does not always work …

When Recursive Descent Does Not Work

• Consider a production $S \to S a$
  ```
  bool $S_1()$ { return $S()$ && term(a); }
  bool $S()$ { return $S_1()$; }
  ```
• $S()$ will get into an infinite loop
• A left-recursive grammar has a non-terminal S
 $S \to^* S\alpha$ for some α
• Recursive descent does not work in such cases
 - It goes into an infinite loop

Elimination of Left Recursion

• Consider the left-recursive grammar
 $S \to S \alpha | \beta$
• S generates all strings starting with a β and
 followed by any number of α's
• The grammar can be rewritten using right-recursion
 $$
 S \to \beta \ S' \\
 S' \to \alpha \ S' | \varepsilon
 $$

More Elimination of Left-Recursion

• In general
 $S \to S \alpha_1 | ... | S \alpha_n | \beta_1 | ... | \beta_m$
• All strings derived from S start with one of
 $\beta_1, ..., \beta_m$ and continue with several instances of
 $\alpha_1, ..., \alpha_n$
• Rewrite as
 $$
 S \to \beta_1 \ S' | ... | \beta_m \ S' \\
 S' \to \alpha_1 \ S' | ... | \alpha_n \ S' | \varepsilon
 $$
General Left Recursion

- The grammar

 \[S \rightarrow A \alpha \mid \delta \]

 \[A \rightarrow S \beta \]

 is also left-recursive because

 \[S \rightarrow^* S \beta \alpha \]

- This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of productions
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

- Hard to predict because
 - For \(T \) two productions start with \text{int}
 - For \(E \) it is not clear how to predict

- A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

- Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T \]

- Factor out common prefixes of productions
 \[E \rightarrow T \ X \]
 \[X \rightarrow + E \mid \varepsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow \ast T \mid \varepsilon \]

- This grammar is equivalent to the original one

LL(1) Parsing Table Example

- Left-factored grammar
 \[E \rightarrow T \ X \]
 \[X \rightarrow + E \mid \varepsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow \ast T \mid \varepsilon \]

- The LL(1) parsing table ($ is the end marker):

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>()</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>+E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>*T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LL(1) Parsing Table Example (Cont.)

- Consider the \[E, \text{int}\] entry
 - “When current non-terminal is \(E \) and next input is \text{int}, use production \(E \rightarrow T \ X \)”
 - This production can generate an \text{int} in the first place

- Consider the \[Y,+\] entry
 - “When current non-terminal is \(Y \) and current token is +, get rid of \(Y \)”
 - \(Y \) can be followed by + only in a derivation in which \(Y \rightarrow \varepsilon \)
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the \([E,*]\) entry
 - “There is no way to derive a string starting with * from non-terminal \(E\)”

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal \(X\)
 - We look at the next token \(a\)
 - And choose the production shown at \([X,a]\)
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```plaintext
initialize stack ← \(<S \>$> and next
repeat
    case stack of
        \(<X, \text{rest}>\) : if \(T[X,*\text{next}] == Y_1\ldots Y_n\)
        then stack ← \(<Y_1\ldots Y_n, \text{rest}>\);
        else error();
        \(<t, \text{rest}>\) : if \(t == *\text{next++}\)
        then stack ← \(<\text{rest}>\);
        else error();
until stack == <>
```

LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E $)</td>
<td>int * int $</td>
<td>(T X)</td>
</tr>
<tr>
<td>(T X $)</td>
<td>int * int $</td>
<td>int (Y)</td>
</tr>
<tr>
<td>int (Y X $)</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>(Y X $)</td>
<td>* int $</td>
<td>* (T)</td>
</tr>
<tr>
<td>(Y X X $)</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>(T X $)</td>
<td>int $</td>
<td>int (Y)</td>
</tr>
<tr>
<td>int (Y X $)</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>(Y X $)</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>(X $)</td>
<td>$</td>
<td>ε</td>
</tr>
<tr>
<td>($)</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

```

<table>
<thead>
<tr>
<th>int</th>
<th>*</th>
<th>*</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>(T)</td>
<td>(X)</td>
<td>(X)</td>
<td>(E)</td>
<td>(E)</td>
</tr>
<tr>
<td>(X)</td>
<td>(+)</td>
<td>(_)</td>
<td>(_)</td>
<td>(_)</td>
<td>(_)</td>
</tr>
<tr>
<td>(T)</td>
<td>(_)</td>
<td>(_)</td>
<td>((_)</td>
<td>() (_)</td>
<td></td>
</tr>
<tr>
<td>(Y)</td>
<td>(_)</td>
<td>(_)</td>
<td>(_)</td>
<td>(_)</td>
<td>(_)</td>
</tr>
</tbody>
</table>
```
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- where no table entry is multiply defined

- Once we have the table
 - The parsing is simple and fast
 - No backtracking is necessary

- We want to generate parsing tables from CFG

Computing First Sets

Definition

\[
\text{First}(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \}
\]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \)
 \[\text{and } \varepsilon \in \text{First}(A_i) \text{ for each } 1 \leq i \leq n \]
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \)
 \[\text{and } \varepsilon \in \text{First}(A_i) \text{ for each } 1 \leq i \leq n \]

More constructive algorithm

1. \(\text{First}(t) = \{ t \} \)
2. For all productions \(X \rightarrow A_1 \ldots A_n \)
 - Add \(\text{First}(A_1) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \not\in \text{First}(A_1) \).
 - Add \(\text{First}(A_2) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \not\in \text{First}(A_2) \).
 - ...
 - Add \(\text{First}(A_n) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \not\in \text{First}(A_n) \).
 - Add \(\{ \varepsilon \} \) to \(\text{First}(X) \).
First Sets: Example

• Recall the grammar

\[E \rightarrow T X \]
\[X \rightarrow + E | \varepsilon \]
\[T \rightarrow (E) | \text{int} \]
\[Y \rightarrow * T | \varepsilon \]

• First sets

<table>
<thead>
<tr>
<th>Symbol</th>
<th>First Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>({ (})</td>
</tr>
<tr>
<td>)</td>
<td>({) }</td>
</tr>
<tr>
<td>int</td>
<td>({ \text{int} })</td>
</tr>
<tr>
<td>+</td>
<td>({ +, \varepsilon })</td>
</tr>
<tr>
<td>*</td>
<td>({ *, \varepsilon })</td>
</tr>
</tbody>
</table>

Computing Follow Sets

• Definition

\[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta X \delta \} \]

• Intuition

- If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \) and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
- Also if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
- If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)

Computing Follow Sets (Cont.)

Algorithm sketch

1. \(\$ \in \text{Follow}(S) \)
2. \(\text{First}(\beta) - \{ \varepsilon \} \subseteq \text{Follow}(X) \)
 For each production \(A \rightarrow \alpha X \beta \)
3. \(\text{Follow}(A) \subseteq \text{Follow}(X) \)
 For each production \(A \rightarrow \alpha X \beta \) where \(\varepsilon \in \text{First}(\beta) \)

More constructive algorithm

1. First compute the \(\text{First} \) sets for all non-terminals
2. If \(S \) is the start symbol, add \(\$ \) to \(\text{Follow}(S) \)
3. For all productions \(Y \rightarrow \ldots X A_1 \ldots A_n \)
 a. Add \(\text{First}(A_1) - \{ \varepsilon \} \) to \(\text{Follow}(X) \). Stop if \(\varepsilon \notin \text{First}(A_1) \).
 b. Add \(\text{First}(A_2) - \{ \varepsilon \} \) to \(\text{Follow}(X) \). Stop if \(\varepsilon \notin \text{First}(A_2) \).
 c. ...
 d. Add \(\text{First}(A_n) - \{ \varepsilon \} \) to \(\text{Follow}(X) \). Stop if \(\varepsilon \notin \text{First}(A_n) \).
 e. Add \(\text{Follow}(Y) \) to \(\text{Follow}(X) \).
Follow Sets: Example

- Recall the grammar

\[
E \rightarrow TX \\
X \rightarrow +E | \varepsilon \\
T \rightarrow (E) | \text{int}Y \\
Y \rightarrow *T | \varepsilon
\]

- Follow sets

Follow(+) = \{ \text{int}, (\} \\
Follow(*) = \{ \text{int}, (\} \\
Follow(()) = \{ \text{int}, (\} \\
Follow(+) = \{ \text{int}, (\} \\
Follow((()) = \{ \text{int}, (\} \\
Follow(int) = \{ *, +,) , \}$

Constructing LL(1) Parsing Tables

- Construct a parsing table \(T \) for CFG \(G \)

- For each production \(A \rightarrow \alpha \) in \(G \) do:
 - For each terminal \(t \in \text{First}(\alpha) \) do
 \[T[A, t] = \alpha \]
 - If \(\varepsilon \in \text{First}(\alpha) \), for each \(t \in \text{Follow}(A) \) do
 \[T[A, t] = \alpha \]
 - If \(\varepsilon \in \text{First}(\alpha) \) and \(\$ \in \text{Follow}(A) \) do
 \[T[A, \$] = \alpha \]

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then \(G \) is not LL(1)
 - If \(G \) is ambiguous
 - If \(G \) is left recursive
 - If \(G \) is not left-factored
 - And in other cases as well

- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy

 Predictive parsing (LL(1))

- Next time: a more powerful parsing strategy