Introduction to Bottom-Up Parsing

<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Review LL parsing</td>
</tr>
<tr>
<td>• Shift-reduce parsing</td>
</tr>
<tr>
<td>• The LR parsing algorithm</td>
</tr>
<tr>
<td>• Constructing LR parsing tables</td>
</tr>
</tbody>
</table>

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

\[
E \rightarrow T + E \mid T \\
T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T
\]

- The leaves at any point form a string \(\beta A\gamma\)
 - \(\beta\) contains only terminals
 - The input string is \(\beta b\delta\)
 - The prefix \(\beta\) matches
 - The next token is \(b\)
Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

\[
E \rightarrow T^* E \\
T \rightarrow \text{int}^* T \\
T \rightarrow \text{int} \\
\]

- The leaves at any point form a string \(\beta A \gamma \)
 - \(\beta \) contains only terminals
 - The input string is \(\beta b \delta \)
 - The prefix \(\beta \) matches
 - The next token is \(b \)

\[
\text{int}^* \text{int} + \text{int}
\]

Predictive Parsing: Review

- A predictive parser is described by a table
 - For each non-terminal \(A \) and for each token \(b \) we specify a production \(A \rightarrow \alpha \)
 - When trying to expand \(A \) we use \(A \rightarrow \alpha \) if \(b \) is the token that follows next

- Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary

Constructing Predictive Parsing Tables

Consider the state \(S \rightarrow^* \beta A \gamma \)
 - With \(b \) the next token
 - Trying to match \(\beta b \delta \)

There are two possibilities:

1. Token \(b \) belongs to an expansion of \(A \)
 - Any \(A \rightarrow \alpha \) can be used if \(b \) can start a string derived from \(\alpha \)
 - We say that \(b \in \text{First}(\alpha) \)

Or...
Constructing Predictive Parsing Tables (Cont.)

2. Token \(b \) does not belong to an expansion of \(A \)
 - The expansion of \(A \) is empty and \(b \) belongs to an expansion of \(\gamma \)
 - Means that \(b \) can appear after \(A \) in a derivation of the form \(S \rightarrow^* \beta Ab\omega \)
 - We say that \(b \in \text{Follow}(A) \) in this case

First Sets: Example

- Recall the grammar

 \[
 \begin{align*}
 E &\rightarrow T \ X \\
 T &\rightarrow (E) \mid \text{int} \\
 Y &\rightarrow * \ T \mid \varepsilon \\
 X &\rightarrow + \ E \mid \varepsilon
 \end{align*}
 \]

- First sets

 \[
 \begin{align*}
 \text{First}(\text{(}) &= \{ \text{(} \} \\
 \text{First}(\text{)} &= \{ \text{, (} \} \\
 \text{First}(\text{int }) &= \{ \text{int} \} \\
 \text{First}(\text{+ }) &= \{ + \} \\
 \text{First}(\text{* }) &= \{ * \}
 \end{align*}
 \]

Computing First Sets

- Definition

 \[
 \text{First}(X) = \{ b \mid X \rightarrow^* b \alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \}
 \]

- Algorithm sketch

 1. \(\text{First}(b) = \{ b \} \)
 2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
 3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)
 4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \) and \(\varepsilon \in \text{First}(A_i) \) for \(1 \leq i \leq n \)

Computing Follow Sets

- Definition

 \[
 \text{Follow}(X) = \{ b \mid S \rightarrow^* \beta X b\delta \}
 \]

- Intuition

 - If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \) and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
 - Also if \(B \rightarrow^* \varepsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
 - If \(S \) is the start symbol then \(\$ \in \text{Follow}(S) \)
Computing Follow Sets (Cont.)

Algorithm sketch
1. $ \in \text{Follow}(S)$
2. First(β) - {ε} \subseteq Follow(X)
 - For each production $A \rightarrow \alpha X \beta$
3. Follow(A) \subseteq Follow(X)
 - For each production $A \rightarrow \alpha X \beta$ where ε \in First(β)

Follow Sets: Example

• Recall the grammar

 \[
 E \rightarrow T X \\
 X \rightarrow + E | \epsilon \\
 T \rightarrow (E) | \text{int} \ Y \\
 Y \rightarrow * T | \epsilon
 \]

• Follow sets

 \[
 \begin{align*}
 \text{Follow(+)} &= \{ \text{int}, (\} \\
 \text{Follow(*)} &= \{ \text{int}, (\} \\
 \text{Follow(()} &= \{ \text{int}, (\} \\
 \text{Follow(E)} &= \{), \} \\
 \text{Follow(X)} &= \{ $,) \} \\
 \text{Follow(T)} &= \{ +,), $ \} \\
 \text{Follow(Y)} &= \{ +,), $ \} \\
 \text{Follow(int)} &= \{ *, +,), $ \}
 \end{align*}
 \]

Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production $A \rightarrow \alpha$ in G do:

 - For each terminal $b \in \text{First}(\alpha)$ do

 $T[A, b] = \alpha$
 - If ε \in First(α), for each $b \in \text{Follow}(A$) do

 $T[A, b] = \alpha$
 - If ε \in First(α) and $\epsilon \in \text{Follow}(A)$ do

 $T[A, \epsilon] = \alpha$

Constructing LL(1) Tables: Example

• Recall the grammar

 \[
 E \rightarrow T X \\
 X \rightarrow + E | \epsilon \\
 T \rightarrow (E) | \text{int} \ Y \\
 Y \rightarrow * T | \epsilon
 \]

• Where in the line of Y do we put $Y \rightarrow T$?

 - In the lines of First(T) = { * }

• Where in the line of Y do we put $Y \rightarrow \epsilon$?

 - In the lines of Follow(Y) = { $, +,) \}
Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well

• For some grammars there is a simple parsing strategy: Predictive parsing
• Most programming language grammars are not LL(1)
• Thus, we need more powerful parsing strategies

Bottom-Up Parsing

• Bottom-up parsing is more general than top-down parsing
 - And just as efficient
 - Builds on ideas in top-down parsing
 - Preferred method in practice

• Also called LR parsing
 - L means that tokens are read left-to-right
 - R means that it constructs a rightmost derivation!

An Introductory Example

• LR parsers don’t need left-factored grammars and can also handle left-recursive grammars

• Consider the following grammar:

\[E \rightarrow E + (E) | \text{int} \]

- Why is this not LL(1)?

• Consider the string: \text{int} + (\text{int}) + (\text{int})
The Idea

- LR parsing reduces a string to the start symbol by inverting productions:

str w input string of terminals
repeat
 - Identify β in str such that A → β is a production (i.e., str = αβγ)
 - Replace β by A in str (i.e., str w = αAγ)
until str = S (the start symbol)
 OR all possibilities are exhausted

A Bottom-up Parse in Detail (1)

E → E + (E) | int
int + (int) + (int)

A Bottom-up Parse in Detail (2)

E → E + (E) | int
int + (int) + (int)
E + (int) + (int)

A Bottom-up Parse in Detail (3)

E → E + (E) | int
int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
A Bottom-up Parse in Detail (4)

$E \rightarrow E + (E) \mid int$

- $int + (int) + (int)$
- $E + (int) + (int)$
- $E + (E) + (int)$
- $E + (int)$

A Bottom-up Parse in Detail (5)

$E \rightarrow E + (E) \mid int$

- $int + (int) + (int)$
- $E + (int) + (int)$
- $E + (E) + (int)$
- $E + (int)$
- $E + (E)$

A Bottom-up Parse in Detail (6)

$E \rightarrow E + (E) \mid int$

- $int + (int) + (int)$
- $E + (int) + (int)$
- $E + (E) + (int)$
- $E + (int)$
- $E + (E)$
- E

A rightmost derivation in reverse

Important Fact #1 about Bottom-up Parsing

An LR parser traces a rightmost derivation in reverse
Where Do Reductions Happen

Fact #1 has an interesting consequence:
- Let $\alpha \beta \gamma$ be a step of a bottom-up parse
- Assume the next reduction is by using $A \rightarrow \beta$
- Then γ is a string of terminals

Why?
Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a right-most derivation

Notation
- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a I
 - The I is not part of the string
- Initially, all input is unexamined: $Ix_1x_2 \ldots x_n$

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

- **Shift**
- **Reduce**

Shift:
Shift: Move I one place to the right
- Shifts a terminal to the left string

In general:
$E + (I \text{ int }) \Rightarrow E + (\text{ int } I)$

In general:
$ABC I xyz \Rightarrow ABCx I yz$
Reduce

Reduce: Apply an inverse production at the right end of the left string
- If \(E \rightarrow E + (E) \) is a production, then

\[
E + (E + (E)) \Rightarrow E + (E)
\]

In general, given \(A \rightarrow xy \), then:

\[
C_{bxy} \Rightarrow C_{bA}
\]

Shift-Reduce Example

<table>
<thead>
<tr>
<th>Action</th>
<th>Symbol</th>
<th>State</th>
<th>Action</th>
<th>Symbol</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift</td>
<td>int</td>
<td></td>
<td>Reduce</td>
<td>E</td>
<td>int</td>
</tr>
<tr>
<td>Shift</td>
<td>int</td>
<td>int</td>
<td>Reduce</td>
<td>E</td>
<td>int</td>
</tr>
<tr>
<td>Shift</td>
<td>int</td>
<td>int</td>
<td>Reduce</td>
<td>E</td>
<td>int</td>
</tr>
</tbody>
</table>
Shift-Reduce Example

1. int + (int) + (int) $
 \text{shift}

2. int I + (int) + (int) $
 \text{reduce } E \rightarrow \text{int}

3. E I + (int) + (int) $
 \text{shift 3 times}

4. E + (int I) + (int) $
 \text{reduce } E \rightarrow \text{int}

5. E + (E I) + (int) $
 \text{shift}

6. E + (E I) + (int) $
 \text{reduce } E \rightarrow \text{int}

7. E + (int I) + (int) $
 \text{shift 3 times}

8. E + (int I) + (int) $
 \text{reduce } E \rightarrow \text{int}

9. E + (E I) + (int) $
 \text{shift}

10. E + (E I) + (int) $
 \text{reduce } E \rightarrow E + (E)$

11. E I + (int) $
 \text{shift 3 times}

12. E I + (int) $
 \text{reduce } E \rightarrow \text{int}

13. E + (E I) + (int) $
 \text{shift}

14. E + (E I) + (int) $
 \text{reduce } E \rightarrow E + (E)$

15. E I + (int) $
 \text{shift 3 times}
The Stack

- Left string can be implemented by a stack
 - Top of the stack is the I
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)

Key Question: To Shift or to Reduce?

Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The input is the stack
- The language consists of terminals and non-terminals

- We run the DFA on the stack and examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then shift
 - If X is labeled with “$A \rightarrow \beta$ on tok” then reduce

LR(1) Parsing: An Example

```
LR(1) Parsing: An Example
```

```
int
E → int 
on $, +
accept
on $, +
E → E + (E)
on $, +
E → E + (E)
on $, +
E → int
```

```
Representing the DFA
```

- Parsers represent the DFA as a 2D table
 - Lines correspond to DFA states
 - Columns correspond to terminals and non-terminals
- Typically columns are split into:
 - Those for terminals: action table
 - Those for non-terminals: goto table

```
Representing the DFA: Example

- The table for a fragment of our DFA:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>s5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r_E→int</td>
<td>r_E→int</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>s8</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r_E→E+(E)</td>
<td>r_E→E+(E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
  - This is wasteful, since most of the work is repeated

- Remember for each stack element on which state it brings the DFA

- LR parser maintains a stack
  \( \langle \text{sym}_1, \text{state}_1 \rangle \ldots \langle \text{sym}_n, \text{state}_n \rangle \)
  - \( \text{state}_k \) is the final state of the DFA on \( \text{sym}_1 \ldots \text{sym}_k \)

LR Parsers

- Can be used to parse more grammars than LL
- Most programming languages grammars are LR
- LR Parsers can be described as a simple table
- There are tools for building the table
- How is the table constructed?

```plaintext
let I = w$ be initial input
let j = 0
let DFA state 0 be the start state
let stack = \langle \text{dummy}, 0 \rangle
repeat
 case action[top_state(stack), I[j]] of
 shift k: push \langle I[j++], k \rangle
 reduce X → A:
 pop |A| pairs,
 push \langle X, Goto[top_state(stack), X] \rangle
 accept: halt normally
 error: halt and report error
```