Intermediate Code & Local Optimizations

Lecture Outline

• What is “Intermediate code”?
• Why do we need it?
• How to generate it?
• How to use it?
• Optimizations
 – Local optimizations

Code Generation Summary

• We have so far discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation
• Our compiler goes directly from the abstract syntax tree (AST) to assembly language...
 - ... and does not perform optimizations

Why Intermediate Languages?

ISSUE: Reduce code complexity

• Multiple front-ends
 - gcc can handle C, C++, Java, Fortran, Ada, ...
 - each front-end translates source to the same generic language (called GENERIC)
• Multiple back-ends
 - gcc can generate machine code for various target architectures: x86, x86_64, SPARC, ARM, ...

• One Icode to bridge them!
 - Do most optimization on intermediate representation before emitting machine code
Why Intermediate Languages?

ISSUE: When to perform optimizations
- On abstract syntax trees
 - **Pro:** Machine independent
 - **Con:** Too high level
- On assembly language
 - **Pro:** Exposes most optimization opportunities
 - **Con:** Machine dependent
 - **Con:** Must re-implement optimizations when re-targeting
- On an intermediate language
 - **Pro:** Exposes optimization opportunities
 - **Pro:** Machine independent

Kinds of Intermediate Languages

High-level intermediate representations:
- closer to the source language (structs, arrays)
- easy to generate from the input program
- code optimizations may not be straightforward

Low-level intermediate representations:
- closer to target machine: GCC’s RTL, 3-address code
- easy to generate code from
- generation from input program may require effort

“Mid”-level intermediate representations:
- programming language and target independent
- Java bytecode, Microsoft CIL, LLVM IR, ...

Intermediate Code Languages: Design Issues
- Designing a good ICode language is not trivial
- The set of operators in ICode must be rich enough to allow the implementation of source language operations
- ICode operations that are closely tied to a particular machine or architecture, make retargeting harder
- A small set of operations
 - may lead to long instruction sequences for some source language constructs,
 - but on the other hand makes retargeting easier

Intermediate Languages
- Each compiler uses its own intermediate language
- Nowadays, usually an intermediate language is a high-level assembly language
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., *push* translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Architecture of gcc

- Source Code ➔ AST ➔ GENERIC ➔ High GIMPLE ➔ SSA ➔ Low GIMPLE ➔ RTL ➔ Machine Code

Three-Address Intermediate Code

- Each instruction is of the form $x := y \text{ op } z$
 - y and z can only be registers or constants
 - Just like assembly
- Common form of intermediate code
- The expression $x + y \times z$ gets translated as
 \[
 \begin{align*}
 t_1 & := y \times z \\
 t_2 & := x + t_1
 \end{align*}
 \]
 - temporary names are made up for internal nodes
 - each sub-expression has a "home"

Generating Intermediate Code

- Similar to assembly code generation
- Major difference
 - Use any number of IL registers to hold intermediate results

Example:
\[
\begin{align*}
 & \text{if } (x + 2 > 3 \times (y - 1) + 42) \text{ then } z := 0; \\
 & \quad t_1 := x + 2 \\
 & \quad t_2 := y - 1 \\
 & \quad t_3 := 3 \times t_2 \\
 & \quad t_4 := t_3 + 42 \\
 & \quad \text{if } t_1 \leq t_4 \text{ goto } L \\
 & \quad z := 0 \\
 & L:
\end{align*}
\]

Generating Intermediate Code (Cont.)

- $igen(e, t)$ function generates code to compute the value of e in register t
- Example:
 \[
 igen(e_1 + e_2, t) = \\
 \quad igen(e_1, t_1) \quad (t_1 \text{ is a fresh register}) \\
 \quad igen(e_2, t_2) \quad (t_2 \text{ is a fresh register}) \\
 \quad t := t_1 + t_2
 \]
- Unlimited number of registers
 \[\Rightarrow \text{simple code generation} \]
From ICode to Machine Code

This is almost a macro expansion process

<table>
<thead>
<tr>
<th>ICode</th>
<th>MIPS assembly code</th>
</tr>
</thead>
</table>
| $x := A[i]$ | load i into $r1$
| | la $r2$, A |
| | add $r2$, $r2$, $r1$|
| | lw $r2$, ($r2$) |
| | sw $r2$, x |
| $x := y + z$ | load y into $r1$
| | load z into $r2$|
| | add $r3$, $r1$, $r2$|
| | sw $r3$, x |
| if $x >= y$ goto L | load x into $r1$
| | load y into $r2$|
| | bge $r1$, $r2$, L |

Basic Blocks

- A basic block is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

- Idea:
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - Each instruction in a basic block is executed after all the preceding instructions have been executed

Basic Block Example

Consider the basic block

\[
L: \\
t := 2 * x \\
w := t + x \\
\text{if } w > 0 \text{ goto } L'
\]

1. No way for (3) to be executed without (2) having been executed right before
 - We can change (3) to $w := 3 * x$
 - Can we eliminate (2) as well?

Identifying Basic Blocks

- Determine the set of leaders, i.e., the first instruction of each basic block:
 - The first instruction of a function is a leader
 - Any instruction that is a target of a branch is a leader
 - Any instruction immediately following a (conditional or unconditional) branch is a leader
- For each leader, its basic block consists of itself and all instructions up to, but not including, the next leader (or end of function)
Control-Flow Graphs

A control-flow graph is a directed graph with
- Basic blocks as nodes
- An edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B

 E.g., the last instruction in A is goto L_0
 E.g., the execution can fall-through from block A to block B

Frequently abbreviated as CFGs

Control-Flow Graphs: Example

- The body of a function (or method or procedure) can be represented as a control-flow graph
- There is one initial node
- All “return” nodes are terminal

Constructing the Control Flow Graph

- First identify the basic blocks of the function
- There is a directed edge between block B_1 to block B_2 if
 - there is a (conditional or unconditional) jump from the last instruction of B_1 to the first instruction of B_2 or
 - B_2 immediately follows B_1 in the textual order of the program, and B_1 does not end in an unconditional jump.

Optimization Overview

- Compiler “optimizations” seek to improve a program’s utilization of some resource
 - Execution time (most often)
 - Code size
 - Network messages sent
 - (Battery) power used, etc.

- Optimization should not alter what the program computes
 - The answer must still be the same
 - Observable behavior must be the same
 - this typically also includes termination behavior
A Classification of Optimizations

For languages like C there are three granularities of optimizations

1. **Local optimizations**
 - Apply to a basic block in isolation

2. **Global optimizations**
 - Apply to a control-flow graph (function body) in isolation

3. **Inter-procedural optimizations**
 - Apply across method boundaries

Most compilers do (1), many do (2) and very few do (3)

Note: there are also link-time optimizations

Cost of Optimizations

- In practice, a conscious decision is made **not** to implement the fanciest optimizations
- Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in terms of compilation time
 - Some optimizations are hard to get completely right
 - The fancy optimizations are often hard, costly, and difficult to get completely correct
- Goal: maximum improvement with minimum cost

Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
- Example: algebraic simplification

Algebraic Simplification

- Some statements can be deleted
 - \(x := x + 0 \)
 - \(x := x * 1 \)
- Some statements can be simplified
 - \(y := y ** 2 \) \implies y := y * y
 - \(x := x * 8 \) \implies x := x << 3
 - \(x := x * 15 \) \implies \dagger := x << 4; x := \dagger - x \)
 (on some machines << is faster than *; but not on all!)

Constant Folding

- Operations on constants can be computed at compile time
- In general, if there is a statement
 \[x := y \text{ op } z \]
 - And \(y \) and \(z \) are constants
 - Then \(y \text{ op } z \) can be computed at compile time
- Example: \(x := 20 + 22 \Rightarrow x := 42 \)
- Example: if \(42 < 17 \) goto \(L \) can be deleted

Flow of Control Optimizations

- Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or "fall through" from a conditional
 - Such basic blocks can be eliminated
- Why/how would such basic blocks occur?
- Removing unreachable code makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)

Single Assignment Form

- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment
- Basic blocks of intermediate code can be rewritten to be in single assignment form

 \[
 \begin{align*}
 x := z + y & \quad x := z + y \\
 a := x & \quad a := x \\
 x := 2 \times x & \quad b := 2 \times x \\
 \end{align*}
 \]
 (\(b \) is a fresh temporary)
- More complicated in general, due to control flow (e.g. loops)
 - Static single assignment (SSA) form

Common Subexpression Elimination

- Assume
 - A basic block is in single assignment form
 - A definition \(x := \) is the first use of \(x \) in a block
- All assignments with same RHS compute the same value
- Example:

 \[
 \begin{align*}
 x := y + z & \quad x := y + z \\
 \ldots & \quad \ldots \\
 w := y + z & \quad w := x \\
 \end{align*}
 \]
 (the values of \(x, y, \) and \(z \) do not change in the \(\ldots \) code)
Copy Propagation

- If \(w := x \) appears in a block, all subsequent uses of \(w \) can be replaced with uses of \(x \)

- Example:
 \[
 \begin{align*}
 b &:= z + y \quad b := z + y \\
 a &:= b \quad a := b \\
 x &:= 2 * a \quad x := 2 * b
 \end{align*}
 \]

- This does not make the program smaller or faster but might enable other optimizations
 - Constant folding
 - Dead code elimination

Constant Propagation and Constant Folding

- Example:
 \[
 \begin{align*}
 a &:= 5 \quad a := 5 \\
 x &:= 2 * a \quad \Rightarrow \quad x := 10 \\
 y &:= x + 6 \quad y := 16 \\
 t &:= x * y \quad t := 160
 \end{align*}
 \]

Dead Code Elimination

If \(w := \text{RHS} \) appears in a basic block and \(w \) does not appear anywhere else in the program then the statement \(w := \text{RHS} \) is dead and can be eliminated

- \(\text{Dead} = \) does not contribute to the program’s result

Example: (\(a \) is not used anywhere else)
 \[
 \begin{align*}
 x &:= z + y \quad x := z + y \quad x := z + y \\
 a &:= x \quad a := x \quad \Rightarrow \quad b := 2 * x \\
 b &:= 2 * a \quad b := 2 * x
 \end{align*}
 \]

Applying Local Optimizations

- Each local optimization does very little by itself

- Typically optimizations interact
 - Performing one optimization enables another

- Optimizing compilers repeatedly perform optimizations until no improvement is possible
 - The optimizer can also be stopped at any time to limit the compilation time
An Example

Initial code:
```plaintext
a := x ** 2  
b := 3  
c := x  
d := c * c  
e := b * 2  
f := a + d  
g := e * f
```

assume that only f and g are used in the rest of program

An Example

Algebraic simplification:
```plaintext
a := x ** 2  
b := 3  
c := x  
d := c * c  
e := b * 2  
f := a + d  
g := e * f
```

An Example

Algebraic simplification:
```plaintext
a := x * x  
b := 3  
c := x  
d := c * c  
e := b << 1  
f := a + d  
g := e * f
```

An Example

Copy and constant propagation:
```plaintext
a := x * x  
b := 3  
c := x  
d := c * c  
e := b << 1  
f := a + d  
g := e * f
```
An Example

Copy and constant propagation:

- \(a := x \times x \)
- \(b := 3 \)
- \(c := x \)
- \(d := x \times x \)
- \(e := 3 \ll 1 \)
- \(f := a + d \)
- \(g := e \times f \)

An Example

Constant folding:

- \(a := x \times x \)
- \(b := 3 \)
- \(c := x \)
- \(d := x \times x \)
- \(e := 3 \ll 1 \)
- \(f := a + d \)
- \(g := e \times f \)

An Example

Constant folding:

- \(a := x \times x \)
- \(b := 3 \)
- \(c := x \)
- \(d := x \times x \)
- \(e := 3 \ll 1 \)
- \(f := a + d \)
- \(g := e \times f \)

An Example

Common subexpression elimination:

- \(a := x \times x \)
- \(b := 3 \)
- \(c := x \)
- \(d := x \times x \)
- \(e := 6 \)
- \(f := a + d \)
- \(g := e \times f \)
An Example

Common subexpression elimination:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]

An Example

Copy and constant propagation:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]

An Example

Copy and constant propagation:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + d \\
g & := 6 \times f
\end{align*}
\]

An Example

Dead code elimination:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := a \\
e & := 6 \\
f & := a + a \\
g & := 6 \times f
\end{align*}
\]
An Example

Dead code elimination:
\[a := x \times x \]
\[f := a + a \]
\[g := 6 \times f \]
This is the final form

Peephole Optimizations on Assembly Code

• The optimizations presented before work on intermediate code
 - They are target independent
 - But they can be applied on assembly language also

Peephole optimization is an effective technique for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent (but faster) one

Implementing Peephole Optimizations

• Write peephole optimizations as replacement rules
 \[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]
 where the RHS is the improved version of the LHS
• Example:
 move a b, move b a \rightarrow move a b
 - Works if move b a is not the target of a jump
• Another example:
 addiu a a i, addiu a a j \rightarrow addiu a a $i + j$

Peephole Optimizations

• Redundant instruction elimination, e.g.:
 \[
 \begin{array}{c}
 \ldots \quad \text{goto L} \\
 \text{L:} \quad \ldots \\
 \ldots
 \end{array}
 \Rightarrow
 \begin{array}{c}
 \ldots \\
 \text{L:} \\
 \ldots
 \end{array}
 \]
• Flow of control optimizations, e.g.:
 \[
 \begin{array}{c}
 \ldots \quad \text{goto L1} \\
 \text{L1: goto L2} \\
 \ldots
 \end{array}
 \Rightarrow
 \begin{array}{c}
 \ldots \\
 \text{goto L1} \\
 \text{L1: goto L2} \\
 \ldots
 \end{array}
 \]
Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: `addiu $a $b 0` → `move $a $b`
 - Example: `move $a $a` →
 - These two together eliminate `addiu $a $a 0`

- Just like for local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect

Concluding Remarks

- Multiple front-ends, multiple back-ends via intermediate codes

- Intermediate code is the right representation for many optimizations

- Many simple optimizations can still be applied on assembly language

- Next time: global optimizations