Global Optimization

Lecture Outline

• Global flow analysis
• Global constant propagation
• Liveness analysis

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

```
x := 42
y := z * w
q := y + x
```

Global Optimization

These optimizations can be extended to an entire control-flow graph

```
x := 42
b > 0
y := z * w
q := y + x
```

```
x := 42
b > 0
y := z * w
q := y + x
y := 0
```

```
x := 42
b > 0
y := z * w
q := y + x
y := 0
```
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
x := 42 \\
b > 0 \\
y := z \times w \\
y := 0 \\
q := y + x
\]

Correctness

• How do we know whether it is OK to globally propagate constants?

• There are situations where it is incorrect:

\[
x := 42 \\
b > 0 \\
x := 54 \\
y := z \times w \\
y := 0 \\
q := y + x
\]

Correctness (Cont.)

To replace a use of \(x \) by a constant \(k \) we must know that the following property ** holds:

\(\text{On every path to the use of } x, \text{ the last assignment to } x \text{ is } x := k \) **
Example 1 Revisited

\[
\begin{align*}
x &:= 42 \\
b &> 0 \\
y &:= z \times w \\
q &:= y + x
\end{align*}
\]

Example 2 Revisited

\[
\begin{align*}
x &:= 42 \\
b &> 0 \\
y &:= z \times w \\
x &:= 54 \\
y &:= 0 \\
q &:= y + x
\end{align*}
\]

Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
 - An analysis that determines how data flows over the entire control-flow graph of a function/method

Global Analysis

Global optimization tasks share several traits:
- The optimization depends on knowing a property \(P \) at a particular point in program execution
- Proving \(P \) at any point requires knowledge of the entire function body
- Property \(P \) is typically undecidable!
- It is OK to be conservative: If the optimization requires \(P \) to be true, then want to know either
 - that \(P \) is definitely true, or
 - that we don’t know whether \(P \) is true
- It is always safe to say “don’t know”
 - We try to say do not know as rarely as possible
Global Analysis (Cont.)

• Global dataflow analysis is a standard technique for solving problems with these characteristics

• Global constant propagation is one example of an optimization that requires global dataflow analysis

Global Constant Propagation

• On every path to the use of x, the last assignment to x is $x := k$

• Global constant propagation can be performed at any point where property ** holds

• Consider the case of computing ** for a single variable x at all program points

Global Constant Propagation (Cont.)

• To make the problem precise, we associate one of the following values with x at every program point

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>c</td>
<td>$x = \text{constant } c$</td>
</tr>
<tr>
<td>*</td>
<td>Don’t know whether x is a constant</td>
</tr>
</tbody>
</table>

Example
Using the Information

• Given global constant information, it is easy to perform the optimization
 - Simply inspect the \(x = ? \) associated with a statement using \(x \)
 - If \(x \) is constant at that point replace that use of \(x \) by the constant

• But how do we compute the properties \(x = ? \)?

The Analysis Idea

The analysis of a (complicated) program can be expressed as a combination of simple rules relating the change in information between adjacent statements

Explanation

• The idea is to “push” or “transfer” information from one statement to the next

• For each statement \(s \), we compute information about the value of \(x \) immediately before and after \(s \)
 \[
 C_{in}(x,s) = \text{value of } x \text{ before } s \\
 C_{out}(x,s) = \text{value of } x \text{ after } s
 \]

Transfer Functions

• Define a transfer function that transfers information from one statement to another

• In the following rules, let statement \(s \) have as immediate predecessors statements \(p_1, \ldots, p_n \)
Rule 1

if $C_{out}(x, p_i) = *$ for any i, then $C_{in}(x, s) = *$

Rule 2

If $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$
then $C_{in}(x, s) = *$

Rule 3

if $C_{out}(x, p_i) = c$ or $#$ for all i,
then $C_{in}(x, s) = c$

Rule 4

if $C_{out}(x, p_i) =#$ for all i,
then $C_{in}(x, s) =#$
The Other Half

- Rules 1-4 relate the \textit{out} of one statement to the \textit{in} of the successor statement
 - they propagate information forward across CFG edges

- We also need rules relating the \textit{in} of a statement to the \textit{out} of the same statement
 - to propagate information across statements

\begin{align*}
\text{Rule 5} \\
C_{\text{out}}(x, s) = \# \text{ if } C_{\text{in}}(x, s) = \#
\end{align*}

\begin{align*}
\text{Rule 6} \\
C_{\text{out}}(x, x := c) = c \text{ if } c \text{ is a constant}
\end{align*}

\begin{align*}
\text{Rule 7} \\
x := f(...) \\
C_{\text{out}}(x, x := f(...)) = * & \text{ where } f \text{ is a function other than the one being analyzed}
\end{align*}

This rule says that we do not perform inter-procedural analysis (i.e. we do not look at what other functions do)
Rule 8

\[\text{Cout}(x, y := ...) = \text{Cin}(x, y := ...) \text{ if } x \neq y \]

An Algorithm

1. For every entry \(s \) to the function, set \(\text{Cin}(x, s) = * \)
2. Set \(\text{Cin}(x, s) = \text{Cout}(x, s) = # \) everywhere else
3. Repeat until all points satisfy 1-8:
 Pick \(s \) not satisfying 1-8 and update using the appropriate rule

The Value #

To understand why we need #, look at a loop:

- Consider the statement \(y := 0 \)
- To compute whether \(x \) is constant at this point, we need to know whether \(x \) is constant at the two predecessors:
 - \(x := 42 \)
 - \(q := y + x \)
- But information for \(q := y + x \) depends on its predecessors, including \(y := 0 \)!
The Value # (Cont.)

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value # means “So far as we know, control never reaches this point”

Example

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := x + y \]
\[q < b \]
\[x = * \]
\[x = 42 \]
\[x = # \]
\[x = 42 \]
\[x = # \]
\[x = 42 \]
Example

Orderings

- We can simplify the presentation of the analysis by ordering the values
 \[\# < c < * \]

- Drawing a picture with "lower" values drawn lower, we get

Orderings (Cont.)

- * is the greatest value, \# is the least
 - All constants are in between and incomparable

- Let *lub* be the least-upper bound in this ordering

- Rules 1-4 can be written using lub:
 \[C_{in}(x, s) = \text{lub} \{ C_{out}(x, p) \mid p \text{ is a predecessor of } s \} \]

Termination

- Simply saying "repeat until nothing changes" doesn't guarantee that eventually we reach a point where nothing changes

- The use of lub explains why the algorithm terminates
 - Values start as \# and only increase
 - \# can change to a constant, and a constant to *
 - Thus, \(C__ (x, s) \) can change at most twice
Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = // worst case
Number of $C_\text{(....)}$ values computed * 2 =
Number of program statements * 4

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $x := 42$ is dead (assuming x is not used elsewhere)

Live and Dead Variables

- The first value of x is dead (never used)
- The second value of x is live (may be used)
- Liveness is an important concept for the compiler

Liveness

A variable x is live at statement s if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x
Global Dead Code Elimination

- A statement \(x := \ldots \) is dead code if \(x \) is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

Liveness Rule 1

\[
L_{\text{out}}(x, p) = \lor \{ L_{\text{in}}(x, s) \mid s \text{ a successor of } p \}
\]

Liveness Rule 2

\[
L_{\text{in}}(x, s) = \text{true} \quad \text{if } s \text{ refers to } x \text{ on the RHS}
\]
Liveness Rule 3

\[L_{\text{in}}(x, x := e) = \begin{cases} \text{false} & \text{if } e \text{ does not refer to } x \\ x = ? & \text{if } e \text{ refers to } x \end{cases} \]

Liveness Rule 4

\[L_{\text{in}}(x, s) = L_{\text{out}}(x, s) \quad \text{if } s \text{ does not refer to } x \]

Algorithm

1. Let all \(L_{\text{...}} = \text{false} \) initially

2. Repeat until all statements \(s \) satisfy rules 1-4
 - Pick \(s \) where one of 1-4 does not hold and update using the appropriate rule

Termination

- A value can change from \text{false} to \text{true}, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis information is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We have seen two kinds of analysis:

- An analysis that enables constant propagation:
 - this is a *forwards* analysis: information is pushed from inputs to outputs

- An analysis that calculates variable liveness:
 - this is a *backwards* analysis: information is pushed from outputs back towards inputs

Global Flow Analyses

- There are many other global flow analyses

- Most can be classified as either forward or backward

- Most also follow the methodology of local rules relating information between adjacent program points