Introduction to Lexical Analysis
Outline

• Informal sketch of lexical analysis
 - Identifies tokens in input string

• Issues in lexical analysis
 - Lookahead
 - Ambiguities

• Specifying lexical analyzers (lexers)
 - Regular expressions
 - Examples of regular expressions
Lexical Analysis

• What do we want to do? Example:

```java
if (i == j)
    z = 0;
else
    z = 1;
```

• The input is just a string of characters:

```java
if (i == j)
    z = 0;
else
    z = 1;
```

• Goal: Partition input string into substrings
 - where the substrings are tokens
 - and classify them according to their role
What’s a Token?

• A syntactic category
 - In English:
 noun, verb, adjective, ...
 - In a programming language:
 Identifier, Integer, Keyword, Whitespace, ...
Tokens

- Tokens correspond to sets of strings
 - these sets depend on the programming language

- **Identifier**: strings of letters or digits, starting with a letter
- **Integer**: a non-empty string of digits
- **Keyword**: "else" or "if" or "begin" or …
- **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
What are Tokens Used for?

• Classify program substrings according to role

• Output of lexical analysis is a stream of tokens . . .

• . . . which is input to the parser

• Parser relies on token distinctions
 - An identifier is treated differently than a keyword
Designing a Lexical Analyzer: Step 1

- Define a finite set of tokens
 - Tokens describe all items of interest
 - Choice of tokens depends on language, design of parser

- Recall

```
if (i == j)
then
  z = 0;
else
  z = 1;
```

- Useful tokens for this expression:
 - Integer, Keyword, Relation, Identifier, Whitespace, (,), =, ;
Designing a Lexical Analyzer: Step 2

• Describe which strings belong to each token

• Recall:
 - Identifier: *strings of letters or digits, starting with a letter*
 - Integer: *a non-empty string of digits*
 - Keyword: “else” or “if” or “begin” or …
 - Whitespace: *a non-empty sequence of blanks, newlines, and tabs*
Lexical Analyzer: Implementation

An implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token
 - The lexeme is the substring
Example

• Recall:

 if (i == j)
 then

 z = 0;

 else

 z = 1;

• Token-lexeme groupings:
 - Identifier: i, j, z
 - Keyword: if, then, else
 - Relation: ==
 - Integer: 0, 1
 - (,), =, ; single character of the same name
Why do Lexical Analysis?

• Dramatically simplify parsing
 - The lexer usually discards “uninteresting” tokens that don’t contribute to parsing
 • E.g. Whitespace, Comments
 - Converts data early

• Separate out logic to read source files
 - Potentially an issue on multiple platforms
 - Can optimize reading code independently of parser
True Crimes of Lexical Analysis

• Is it as easy as it sounds?

• Not quite!

• Look at some programming language history . . .
Lexical Analysis in FORTRAN

• FORTRAN rule: Whitespace is insignificant

• E.g., \texttt{VAR1} is the same as \texttt{VA R1}

FORTRAN whitespace rule was motivated by inaccuracy of punch card operators
A terrible design! Example

• Consider
 – DO 5 I = 1,25
 – DO 5 I = 1.25

• The first is DO 5 I = 1, 25
• The second is DO 5I = 1.25

• Reading left-to-right, the lexical analyzer cannot tell if DO5I is a variable or a DO statement until after “,” is reached
Lexical Analysis in FORTRAN. Lookahead.

Two important points:

1. The goal is to partition the string
 - This is implemented by reading left-to-right, recognizing one token at a time

2. “Lookahead” may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues
 - i vs. if
 - = vs. ==
Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

can be difficult to determine how to label lexemes
More Modern True Crimes in Scanning

Nested template declarations in C++

\[
\text{vector<vector<int>> myVector}
\]

\[
\text{vector < vector < int >> myVector}
\]

\[
\text{(vector < (vector < (int >> myVector))}
\]
Review

• The goal of lexical analysis is to
 - Partition the input string into *lexemes* (the smallest program units that are individually meaningful)
 - Identify the token of each lexeme

• Left-to-right scan \Rightarrow lookahead sometimes required
Next

• We still need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 • Is if two variables i and f?
 • Is $==$ two equal signs $=$ $=$?
Regular Languages

• There are several formalisms for specifying tokens

• Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A language Λ over Σ is a set of strings of characters drawn from Σ

(Σ is called the alphabet of Λ)
Examples of Languages

- Alphabet = English characters
- Language = English sentences
- Not every string on English characters is an English sentence
- Alphabet = ASCII
- Language = C programs
- Note: ASCII character set is different from English character set
Notation

• Languages are sets of strings

• Need some notation for specifying which sets of strings we want our language to contain

• The standard notation for regular languages is regular expressions
Atomic Regular Expressions

- Single character

 \['c' = \{ "c" \} \]

- Epsilon

 \[\varepsilon = \{ "\"\" \} \]
Compound Regular Expressions

• Union

\[A + B = \{ s \mid s \in A \text{ or } s \in B \} \]

• Concatenation

\[AB = \{ ab \mid a \in A \text{ and } b \in B \} \]

• Iteration

\[A^* = \bigcup_{i \geq 0} A^i \text{ where } A^i = A \ldots i \text{ times } \ldots A \]
Regular Expressions

- **Def.** The regular expressions over Σ are the smallest set of expressions including:

 ϵ

 'c' where $c \in \Sigma$

 $A + B$ where A, B are rexp over Σ

 AB

 A^* where A is a rexp over Σ
Syntax vs. Semantics

• To be careful, we should distinguish syntax and semantics (meaning) of regular expressions

\[
L(\varepsilon) = \{\text{""}\}
\]
\[
L(\text{'}c\text{'}) = \{\text{" c"}\}
\]
\[
L(A + B) = L(A) \cup L(B)
\]
\[
L(AB) = \{ab \mid a \in L(A) \text{ and } b \in L(B)\}
\]
\[
L(A^*) = \bigcup_{i \geq 0} L(A^i)
\]
Example: Keyword

Keyword: "else" or "if" or "begin" or ...

'else' + 'if' + 'begin' + ...
Example: Integers

Integer: a non-empty string of digits

digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
integer = digit digit^*

Abbreviation: $A^+ = AA^*$
Example: Identifier

Identifier: *strings of letters or digits*, *starting with a letter*

`letter = 'A' +...+'Z'+'a'+...+'z'`

`identifier = letter (letter + digit)^*`

Is `(letter^* + digit^*)` the same?
Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

\((' ' + '\n' + '\t')^+ \)
Example 1: Phone Numbers

- Regular expressions are all around you!
- Consider +46(0)18-471-1056

\[\Sigma = \text{digits} \cup \{+,-,(,)\} \]

- country = digit digit
- city = digit digit
- univ = digit digit digit
- extension = digit digit digit digit
- phone_num = ‘+’country’(’0‘)’city’–’univ’–’extension
Example 2: Email Addresses

- Consider \textit{kostis@it.uu.se}

\[
\Sigma = \text{letters} \cup \{.,@\} \\
\text{name} = \text{letter}^+ \\
\text{address} = \text{name }'@'\text{name }'.'\text{name }'.'\text{name}
\]
Summary

• Regular expressions describe many useful languages

• Regular languages are a language specification
 - We still need an implementation

• Next: Given a string \(s \) and a regular expression \(R \), is

\[
 s \in L(R) \?
\]

• A yes/no answer is not enough!

• Instead: partition the input into tokens

• We will adapt regular expressions to this goal
Implementation of Lexical Analysis
Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables
Notation

• For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

• Union: $A + B \equiv A | B$

• Option: $A + \varepsilon \equiv A?$

• Range: ‘a’+‘b’+…+‘z’ $\equiv [a-z]$

• Excluded range:
 complement of $[a-z] \equiv [^a-z]$
Regular Expressions ⇒ Lexical Specifications

1. Select a set of tokens
 - Integer, Keyword, Identifier, LeftPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 - Integer = digit +
 - Keyword = ‘if’ + ‘else’ + ...
 - Identifier = letter (letter + digit)*
 - LeftPar = ‘(‘
 - ...

3. Construct R, a regular expression matching all lexemes for all tokens

$$R = \text{Keyword} + \text{Identifier} + \text{Integer} + \ldots$$
$$= R_1 + R_2 + R_3 + \ldots$$

Facts: If $s \in L(R)$ then s is a lexeme
- Furthermore $s \in L(R_j)$ for some “j”
- This “j” determines the token that is reported
Regular Expressions \Rightarrow Lexical Specifications

4. Let input be $x_1...x_n$
 - $(x_1 ... x_n$ are characters in the language alphabet)
 - For $1 \leq i \leq n$ check
 $$x_1...x_i \in L(R) \ ?$$

5. It must be that
 $$x_1...x_i \in L(R_j) \text{ for some } i \text{ and } j$$
 (if there is a choice, pick a smallest such j)

6. Report token j, remove $x_1...x_i$ from input and
 go to step 4
How to Handle Spaces and Comments?

1. We could create a token `Whitespace`

 `Whitespace = (' ' + '\n' + '\t')^`

 • We could also add comments in there
 • An input " \t\n 555 " is transformed into `Whitespace Integer Whitespace`

2. Lexical analyzer skips spaces (preferred)

 • Modify step 5 from before as follows:
 It must be that \(x_k \ldots x_i \in L(R_j)\) for some \(j\) such that \(x_1 \ldots x_{k-1} \in L(Whitespace)\)
 • Parser is not bothered with spaces
Ambiguities (1)

• There are ambiguities in the algorithm

• How much input is used? What if
 • $x_1 \ldots x_i \in L(R)$ and also $x_1 \ldots x_K \in L(R)$

• The “maximal munch” rule: Pick the longest possible substring that matches R
Ambiguities (2)

- Which token is used? What if
 - $x_1...x_i \in L(R_j)$ and also $x_1...x_i \in L(R_k)$
- Rule: use rule listed first (j if $j < k$)

- Example:
 - $R_1 = \text{Keyword}$ and $R_2 = \text{Identifier}$
 - “if” matches both
 - Treats “if” as a keyword not an identifier
Error Handling

• What if
 No rule matches a prefix of input?

• Problem: Can’t just get stuck ...

• Solution:
 – Write a rule matching all “bad” strings
 – Put it last

• Lexical analysis tools allow the writing of:
 \[R = R_1 + \ldots + R_n + \text{Error} \]
 – Token \text{Error} matches if nothing else matches
Summary

• Regular expressions provide a concise notation for string patterns

• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors

• Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Regular Languages & Finite Automata

Basic formal language theory result:
Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)
Finite Automata

A finite automaton is a *recognizer* for the strings of a regular language.

A finite automaton consists of:
- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
- A set of transitions state $\rightarrow^{\text{input}}$ state
Finite Automata

• Transition

\[s_1 \rightarrow^a s_2 \]

• Is read

In state \(s_1 \) on input “a” go to state \(s_2 \)

• If end of input
 - If in accepting state \(\Rightarrow \) accept

• Otherwise
 - If no transition possible \(\Rightarrow \) reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

- A finite automaton that accepts only “1”

- A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

• A finite automaton accepting any number of 1's followed by a single 0
• Alphabet: \{0,1\}
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?
And Another Example

- Alphabet still \{ 0, 1 \}

- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: ε-moves

ε

• Machine can move from state A to state B without reading input
Deterministic and Non-Deterministic Automata

• **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves

• **Non-deterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

• **Finite automata have finite memory**
 - Enough to only encode the current state
Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

• An NFA can get into multiple states

Input: 1 0 1

Rule: NFA accepts an input if it can get in a final state
NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of languages (regular languages)

• DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA

\[
\text{NFA} \\
\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array} \\
\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}
\]

\[
\text{DFA} \\
\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array} \\
\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}
\]

• DFA can be exponentially larger than NFA (contrary to what is shown in the above example)
Regular Expressions to Finite Automata

- High-level sketch

Diagram:

- Regular expressions
 - NFA
 - DFA
 - Table-driven Implementation of DFA
 - Lexical Specification
Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

 ![NFA Diagram](image)

 i.e. our automata have one start and one accepting state

- For ε

 ![NFA Diagram](image)

- For input a

 ![NFA Diagram](image)
Regular Expressions to NFA (2)

- For AB

- For $A + B$
Regular Expressions to NFA (3)

- For A^*
Example of Regular Expression → NFA conversion

• Consider the regular expression
 \[(1+0)^*1\]

• The NFA is
NFA to DFA. The Trick

• Simulate the NFA

• Each state of DFA
 = a non-empty subset of states of the NFA

• Start state
 = the set of NFA states reachable through \(\varepsilon \)-moves from NFA start state

• Add a transition \(S \xrightarrow{a} S' \) to DFA iff
 - \(S' \) is the set of NFA states reachable from any state in \(S \) after seeing the input \(a \)
 • considering \(\varepsilon \)-moves as well
NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some subset of those N states

• How many subsets are there?
 - $2^N - 1$ = finitely many
NFA to DFA Example
Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

- DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

• NFA → DFA conversion is at the heart of tools such as lex, ML-Lex, flex or jlex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.

- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.