Type Checking
Outline

• General properties of type systems

• Types in programming languages

• Notation for type rules
 – Logical rules of inference

• Common type rules
Static Checking

- Refers to the compile-time checking of programs in order to ensure that the semantic conditions of the language are being followed

Examples of static checks include:
- Type checks
- Flow-of-control checks
- Uniqueness checks
- Name-related checks
Static Checking (Cont.)

Flow-of-control checks: statements that cause flow of control to leave a construct must have some place where control can be transferred; e.g., break statements in C

Uniqueness checks: a language may dictate that in some contexts, an entity can be defined exactly once; e.g., identifier declarations, labels, values in case expressions

Name-related checks: Sometimes the same name must appear two or more times; e.g., in Ada a loop or block can have a name that must then appear both at the beginning and at the end
Types and Type Checking

• A type is a set of values together with a set of operations that can be performed on them

• The purpose of type checking is to verify that operations performed on a value are in fact permissible

• The type of an identifier is typically available from declarations, but we may have to keep track of the type of intermediate expressions
Type Expressions and Type Constructors

A language usually provides a set of *base types* that it supports together with ways to construct other types using *type constructors*

Through *type expressions* we are able to represent types that are defined in a program
Type Expressions

- A base type is a type expression
- A type name (e.g., a record name) is a type expression
- A type constructor applied to type expressions is a type expression. E.g.,
 - **arrays**: If T is a type expression and I is a range of integers, then \(\text{array}(I,T) \) is a type expression
 - **records**: If \(T_1, \ldots, T_n \) are type expressions and \(f_1, \ldots, f_n \) are field names, then \(\text{record}((f_1,T_1),\ldots,(f_n,T_n)) \) is a type expression
 - **pointers**: If T is a type expression, then \(\text{pointer}(T) \) is a type expression
 - **functions**: If \(T_1, \ldots, T_n \), and T are type expressions, then so is \((T_1,\ldots,T_n) \rightarrow T \)
Notions of Type Equivalence

Name equivalence: In many languages, e.g. Pascal, types can be given names. Name equivalence views each distinct name as a distinct type. So, two type expressions are name equivalent if and only if they are identical.

Structural equivalence: Two expressions are structurally equivalent if and only if they have the same structure; i.e., if they are formed by applying the same constructor to structurally equivalent type expressions.
Example of Type Equivalence

In the Pascal fragment

 type nextptr = ^node;
 prevptr = ^node;
 var p : nextptr;
 q : prevptr;

\textit{p} is not name equivalent to \textit{q},
but \textit{p} and \textit{q} are structurally equivalent.
Static Type Systems & their Expressiveness

- A static type system enables a compiler to detect many common programming errors.
- The cost is that some correct programs are disallowed:
 - Some argue for dynamic type checking instead.
 - Others argue for more expressive static type checking.
 - But more expressive type systems are also more complex.
Compile-time Representation of Types

• Need to represent type expressions in a way that is both easy to construct and easy to check

Approach 1: Type Graphs

- Basic types can have predefined “internal values”, e.g., small integer values
- Named types can be represented using a pointer into a hash table
- Composite type expressions: the node for \(f(T_1, \ldots, T_n) \) contains a value representing the type constructor \(f \), and pointers to the nodes for the expressions \(T_1, \ldots, T_n \)
Compile-time Representation of Types (Cont.)

Example:

```pascal
var x, y : array[1..42] of integer;
```
Approach 2: Type Encodings

Basic types use a predefined encoding of the low-order bits

<table>
<thead>
<tr>
<th>BASIC TYPE</th>
<th>ENCODING</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>0000</td>
</tr>
<tr>
<td>char</td>
<td>0001</td>
</tr>
<tr>
<td>integer</td>
<td>0010</td>
</tr>
</tbody>
</table>

The encoding of a type expression $\text{op}(T)$ is obtained by concatenating the bits encoding op to the left of the encoding of T. E.g.:

<table>
<thead>
<tr>
<th>TYPE EXPRESSION</th>
<th>ENCODING</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>00 00 00 0001</td>
</tr>
<tr>
<td>array(char)</td>
<td>00 00 01 0001</td>
</tr>
<tr>
<td>ptr(array(char))</td>
<td>00 10 01 0001</td>
</tr>
<tr>
<td>ptr(ptr(array(char)))</td>
<td>10 10 01 0001</td>
</tr>
</tbody>
</table>
Compile-Time Representation of Types: Notes

• Type encodings are simple and efficient.
• On the other hand, named types and type constructors that take more than one type expression as argument are hard to represent as encodings. Also, recursive types cannot be represented directly.

• Recursive types (e.g. lists, trees) are not a problem for type graphs: the graph simply contains a cycle.
Types in an Example Programming Language

• Let's assume that types are:
 - integers & floats (base types)
 - arrays of a base type
 - booleans (used in conditional expressions)

• The user declares types for all identifiers

• The compiler infers types for expressions
 - Infers a type for every expression
Type Checking and Type Inference

Type Checking is the process of verifying fully typed programs

Type Inference is the process of filling in missing type information

- The two are different, but are often used interchangeably
Rules of Inference

• We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)

• The appropriate formalism for type checking is logical rules of inference
Why Rules of Inference?

• Inference rules have the form
 If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
 If E_1 and E_2 have certain types, then E_3 has a certain type

• Rules of inference are a compact notation for “If-Then” statements
From English to an Inference Rule

• The notation is easy to read (with practice)

• Start with a simplified system and gradually add features

• Building blocks:
 - Symbol \(\land \) is “and”
 - Symbol \(\Rightarrow \) is “if-then”
 - \(x : T \) is “\(x \) has type \(T \)”
From English to an Inference Rule (2)

If e_1 has type int and e_2 has type int, then $e_1 + e_2$ has type int

$$(e_1 \text{ has type int } \land e_2 \text{ has type int}) \Rightarrow e_1 + e_2 \text{ has type int}$$

$$(e_1: \text{ int } \land e_2: \text{ int}) \Rightarrow e_1 + e_2: \text{ int}$$
From English to an Inference Rule (3)

The statement

\[(e_1: \text{int} \land e_2: \text{int}) \Rightarrow e_1 + e_2: \text{int}\]

is a special case of

\[\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n \Rightarrow \text{Conclusion}\]

This is an inference rule
Notation for Inference Rules

• By tradition inference rules are written

\[
\vdash \text{Hypothesis}_1 \quad \ldots \quad \vdash \text{Hypothesis}_n \\
\vdash \text{Conclusion}
\]

• Type rules have hypotheses and conclusions of the form:

\[
\vdash e : T
\]

• \(\vdash\) means “it is provable that . . .”
Two Rules

\[\frac{\text{i is an integer}}{\vdash i : \text{int}} \quad [\text{Int}] \]

\[\frac{\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int}}{\vdash e_1 + e_2 : \text{int}} \quad [\text{Add}] \]
Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions

- By filling in the templates, we can produce complete typings for expressions
Example: 1 + 2

\[
\begin{align*}
\quad & 1 \text{ is an integer} \\
\quad & \quad \quad \vdash 1 : \text{int} \\
\quad & 2 \text{ is an integer} \\
\quad & \quad \quad \vdash 2 : \text{int} \\
\quad & \quad \quad \vdash 1 + 2 : \text{int}
\end{align*}
\]
Soundness

- A type system is *sound* if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T

- We only want sound rules
 - But some sound rules are better than others
 - Consider the rule:

 $\begin{align*}
 & \text{\textit{i} is an integer} \\
 \hline \\
 & \vdash i : \text{number}
 \end{align*}$

 - This rule loses some information
Type Checking Proofs

- Type checking proves facts $e : T$
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each kind of AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the type of e
- Types are computed in a bottom-up pass over the AST
Rules for Constants

\[\vdash \text{true : bool} \quad \text{[Bool]} \quad \vdash \text{false : bool} \quad \text{[Bool]} \]

\[\vdash f \text{ is a floating point number} \quad \text{[Float]} \]

\[\vdash f : \text{float} \]
Two More Rules

\[
\frac{\vdash e : \text{bool}}{
\vdash \neg e : \text{bool}} \quad \text{[Not]}
\]

\[
\frac{\vdash e_1 : \text{bool} \quad \vdash e_2 : T}{\vdash \text{while } e_1 \text{ do } e_2 : T} \quad \text{[While]}
\]
A Problem

• What is the type of a variable reference?

\[
\frac{x \text{ is an identifier}}{\vdash x : \text{?} } \quad [\text{Var}]
\]

• See the problem?

• The local, structural rule does not carry enough information to give \(x \) a type
A Solution

• Put more information in the rules!

• A type environment gives types for free variables
 - A type environment is a function from Identifiers to Types
 - A variable is free in an expression if it is not defined within the expression
Type Environments

Let E be a function from Identifiers to Types

The sentence $E \vdash e : T$

is read:

Under the assumption that variables have the types given by E, it is provable that the expression e has the type T
Modified Rules

The type environment is added to the earlier rules:

\[
\frac{
\text{i is an integer}
}{
E \vdash i : \text{int}
}[\text{Int}]
\]

\[
\frac{
E \vdash e_1 : \text{int} \quad E \vdash e_2 : \text{int}
}{
E \vdash e_1 + e_2 : \text{int}
}[\text{Add}]
\]
New Rules

And we can now write a rule for variables:

$$\frac{E(x) = T}{E \vdash x : T} \quad [\text{Var}]$$
Type Checking of Expressions

<table>
<thead>
<tr>
<th>Production</th>
<th>Semantic Rules</th>
</tr>
</thead>
</table>
| $E \rightarrow id$ | \{ if (declared(id.name)) then
E.type := lookup(id.name).type
else E.type := error(); \} |
| $E \rightarrow int$ | \{ E.type := integer; \} |
| $E \rightarrow E1 + E2$ | \{ if (E1.type == integer AND
E2.type == integer) then
E.type := integer;
else E.type := error(); \} |
Type Checking of Expressions (Cont.)

May have automatic *type coercion*, e.g.

<table>
<thead>
<tr>
<th>E1.type</th>
<th>E2.type</th>
<th>E.type</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td>integer</td>
<td>float</td>
<td>float</td>
</tr>
<tr>
<td>float</td>
<td>integer</td>
<td>float</td>
</tr>
<tr>
<td>float</td>
<td>float</td>
<td>float</td>
</tr>
</tbody>
</table>
Type Checking of Statements: Assignment

Semantic Rules:

\[S \rightarrow Lval := Rval \quad \{\text{check_types}(Lval.\text{type},Rval.\text{type})\} \]

Note that in general \textit{Lval} can be a variable or it may be a more complicated expression, e.g., a dereferenced pointer, an array element, a record field, etc.

Type checking involves ensuring that:

- \textit{Lval} is a type that can be assigned to, e.g. it is not a function or a procedure
- the types of \textit{Lval} and \textit{Rval} are “compatible”, i.e., that the language rules provide for coercion of the type of \textit{Rval} to the type of \textit{Lval}
Type Checking of Statements: Loops, Conditionals

Semantic Rules:

Loop → while E do S \{\text{check_types}(\text{E.type, bool})\}

Cond → if E then S1 else S2
\{\text{check_types}(\text{E.type, bool})\}