Code Generation
The Main Idea of Today’s Lecture

We can emit stack-machine-style code for expressions via recursion

(We will use MIPS assembly as our target language)
Lecture Outline

- What are stack machines?
- The MIPS assembly language
- A simple source language (“Mini Bar”)
- A stack machine implementation of the simple language
Stack Machines

- A simple evaluation model
- No variables or registers
- A stack of values for intermediate results
- Each **instruction**:
 - Takes its operands from the top of the stack
 - Removes those operands from the stack
 - Computes the required operation on them
 - Pushes the result onto the stack
Example of Stack Machine Operation

The addition operation on a stack machine

5
7
9
...

5
7
9
...

5
7
9
...

12
9
...

pop add push
Example of a Stack Machine Program

• Consider two instructions
 - push i - place the integer i on top of the stack
 - add - pop topmost two elements, add them
 and put the result back onto the stack

• A program to compute 7 + 5:
 push 7
 push 5
 add
Why Use a Stack Machine?

- Each operation takes operands from the same place and puts results in the same place

- This means a uniform compilation scheme

- And therefore a simpler compiler
Why Use a Stack Machine?

• Location of the operands is implicit
 - Always on the top of the stack
• No need to specify operands explicitly
• No need to specify the location of the result
• Instruction is “add” as opposed to “add r_1, r_2” (or “add r_d r_i1 r_i2”)
 ⇒ Smaller encoding of instructions
 ⇒ More compact programs
• This is one of the reasons why Java Bytecode uses a stack evaluation model
Optimizing the Stack Machine

• The **add** instruction does 3 memory operations
 - Two reads and one write to the stack
 - The top of the stack is frequently accessed

• Idea: keep the top of the stack in a dedicated register (called the “accumulator”)
 - Register accesses are faster (why?)

• The “**add**” instruction is now

 \[
 \text{acc} \leftarrow \text{acc} + \text{top_of_stack}
 \]

 - Only one memory operation!
Stack Machine with Accumulator

Invariants

- The result of computing an expression is always placed in the accumulator.
- For an operation $\text{op}(e_1, \ldots, e_n)$ compute each e_i and then push the accumulator (= the result of evaluating e_i) onto the stack.
- After the operation pop $n-1$ values.
- After computing an expression the stack is as before.
Stack Machine with Accumulator: Example

Compute $7 + 5$ using an accumulator

```
acc
?

stack
...

acc ← 7
push acc

acc ← 5

acc ← acc + top_of_stack
pop

acc ← 7

5

acc ← acc + top_of_stack
pop

acc ← 5

acc ← 7

acc ← 7

acc ← 7

acc ← acc + top_of_stack
pop

acc ← 12
```
A Bigger Example: 3 + (7 + 5)

<table>
<thead>
<tr>
<th>Code</th>
<th>Acc</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc ← 3</td>
<td>3</td>
<td><init></td>
</tr>
<tr>
<td>push acc</td>
<td>3</td>
<td>3, <init></td>
</tr>
<tr>
<td>acc ← 7</td>
<td>7</td>
<td>3, <init></td>
</tr>
<tr>
<td>push acc</td>
<td>7</td>
<td>7, 3, <init></td>
</tr>
<tr>
<td>acc ← 5</td>
<td>5</td>
<td>7, 3, <init></td>
</tr>
<tr>
<td>acc ← acc + top_of_stack</td>
<td>12</td>
<td>7, 3, <init></td>
</tr>
<tr>
<td>pop</td>
<td>12</td>
<td>3, <init></td>
</tr>
<tr>
<td>acc ← acc + top_of_stack</td>
<td>15</td>
<td>3, <init></td>
</tr>
<tr>
<td>pop</td>
<td>15</td>
<td><init></td>
</tr>
</tbody>
</table>
Notes

- It is very important that the stack is preserved across the evaluation of a subexpression
 - Stack before the evaluation of $7 + 5$ is 3, <init>
 - Stack after the evaluation of $7 + 5$ is 3, <init>
 - The first operand is on top of the stack
From Stack Machines to MIPS

- The compiler generates code for a stack machine with accumulator
- We want to run the resulting code on the MIPS processor (or simulator)
- We simulate the stack machine instructions using MIPS instructions and registers
Simulating a Stack Machine on the MIPS...

- The accumulator is kept in MIPS register $a0
- The stack is kept in memory
- The stack grows towards lower addresses
 - Standard convention on the MIPS architecture
- The address of the next location on the stack is kept in MIPS register $sp
 - Guess: what does “sp” stand for?
 - The top of the stack is at address $sp + 4
MIPS Assembly

MIPS architecture

- Prototypical Reduced Instruction Set Computer (RISC) architecture
- Arithmetic operations use registers for operands and results
- Must use load and store instructions to use operands and store results in memory
- 32 general purpose registers (32 bits each)
 - We will use $sp, $a0 and $t1 (a temporary register)

Read the SPIM documentation for more details
A Sample of MIPS Instructions

- **lw reg\(_1\) offset(reg\(_2\))**
 Load 32-bit word from address reg\(_2\) + offset into reg\(_1\)

- **add reg\(_1\) reg\(_2\) reg\(_3\)**
 reg\(_1\) ← reg\(_2\) + reg\(_3\)

- **sw reg\(_1\) offset(reg\(_2\))**
 Store 32-bit word in reg\(_1\) at address reg\(_2\) + offset

- **addiu reg\(_1\) reg\(_2\) imm**
 reg\(_1\) ← reg\(_2\) + imm
 “u” means overflow is not checked

- **li reg imm**
 reg ← imm
 “load immediate”
MIPS Assembly: Example

• The stack-machine code for $7 + 5$ in MIPS:

 acc $\leftarrow 7$
 push acc
 acc $\leftarrow 5$
 acc \leftarrow acc + top_of_stack
 pop

 li $a0 7$
 sw $a0 0($sp)
 addiu spsp -4
 li $a0 5$
 lw $t1 4($sp)
 add $a0$ a0 $t1$
 addiu spsp 4

• We now generalize this to a simple language...
A Small Language

- A language with only integers and integer operations ("Mini Bar")

\[
P \rightarrow F P | F \\
F \rightarrow \text{id(ARGS) begin E end} \\
\text{ARGS} \rightarrow \text{id, ARGs} | \text{id} \\
E \rightarrow \text{int} | \text{id} | \text{if } E_1 = E_2 \text{ then } E_3 \text{ else } E_4 \\
\quad | E_1 + E_2 | E_1 - E_2 | \text{id(ES)} \\
\text{ES} \rightarrow E, \text{ES} | E
\]
A Small Language (Cont.)

• The first function definition \(f \) is the “main” routine

• Running the program on input \(i \) means computing \(f(i) \)

• Program for computing the Fibonacci numbers:

\[
\text{fib}(x) \\
\text{begin} \\
\quad \text{if } x = 1 \text{ then } 0 \text{ else} \\
\quad \quad \text{if } x = 2 \text{ then } 1 \text{ else } \text{fib}(x - 1) + \text{fib}(x - 2) \\
\text{end}
\]
Code Generation Strategy

• For each expression e we generate MIPS code that:
 - Computes the value of e in $a0$
 - Preserves sp and the contents of the stack

• We define a code generation function $cgen(e)$ whose result is the code generated for e
 - $cgen(e)$ will be recursive
Code Generation for Constants

• The code to evaluate an integer constant simply copies it into the accumulator:

 \[\text{cgen(int)} = \text{li } \$a0 \text{ int} \]

• Note that this also preserves the stack, as required
Code Generation for Addition

\[
cgen(e_1 + e_2) = \\
cgen(e_1) \quad ; \quad \$a0 \leftarrow \text{value of } e_1 \\
sw \$a0 \ 0($sp) \quad ; \quad \text{push that value} \\
addiu \$sp \$sp -4 \quad ; \quad \text{onto the stack} \\
cgen(e_2) \quad ; \quad \$a0 \leftarrow \text{value of } e_2 \\
lw \$t1 \ 4($sp) \quad ; \quad \text{grab value of } e_1 \\
add \$a0 \$t1 \$a0 \quad ; \quad \text{do the addition} \\
addiu \$sp \$sp 4 \quad ; \quad \text{pop the stack}
\]

Possible optimization:
Put the result of \(e_1\) directly in register \(\$t1\)?
Code Generation for Addition: Wrong Attempt!

Optimization: Put the result of e_1 directly in $t1$?

cgen(e_1 + e_2) =

 cgen(e_1) ; $a0 \leftarrow \text{value of } e_1$
 move $t1$ $a0 ; \text{save that value in } t1$
 cgen(e_2) ; $a0 \leftarrow \text{value of } e_2$
 ; may clobber $t1$
 add $a0$ $t1$ $a0 ; \text{perform the addition}$

Try to generate code for: $3 + (7 + 5)$
Code Generation Notes

• The code for $e_1 + e_2$ is a template with “holes” for code for evaluating e_1 and e_2
• Stack machine code generation is recursive
• Code for $e_1 + e_2$ consists of code for e_1 and e_2 glued together
• Code generation can be written as a recursive-descent of the AST
 - At least for (arithmetic) expressions
New instruction: `sub reg_1 reg_2 reg_3`

Implements \(\text{reg}_1 \leftarrow \text{reg}_2 - \text{reg}_3 \)

\[
cgen(e_1 - e_2) = \begin{align*}
 & cgen(e_1) \quad ; \text{\$a0} \leftarrow \text{value of } e_1 \\
 & \text{sw } \$a0 \text{ } 0(\$sp) \quad ; \text{push that value} \\
 & \text{addiu } \$sp \text{ } \$sp -4 \quad ; \text{onto the stack} \\
 & cgen(e_2) \quad ; \text{\$a0} \leftarrow \text{value of } e_2 \\
 & \text{lw } \$t1 \text{ } 4(\$sp) \quad ; \text{grab value of } e_1 \\
 & \text{sub } \$a0 \text{ } \$t1 \text{ } \$a0 \quad ; \text{do the subtraction} \\
 & \text{addiu } \$sp \text{ } \$sp \text{ } 4 \quad ; \text{pop the stack}
\end{align*}
\]
Code Generation for Conditional

• We need flow control instructions

• New MIPS instruction: `beq reg₁ reg₂ label`
 - Branch to `label` if `reg₁ = reg₂`

• New MIPS instruction: `j label`
 - Unconditional jump to `label`
Code Generation for If (Cont.)

cgen(if e₁ = e₂ then e₃ else e₄) =
 cgen(e₁)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e₂)
 lw $t1 4($sp)
 addiu $sp $sp 4
 beq $a0 $t1 true_branch
 false_branch:
 cgen(e₄)
 j end_if
 true_branch:
 cgen(e₃)
 end_if:
Meet The Activation Record

• Code for function calls and function definitions depends on the layout of the activation record (or “AR”)

• A very simple AR suffices for this language:
 - The result is always in the accumulator
 • No need to store the result in the AR
 - The activation record holds actual parameters
 • For $f(x_1,\ldots,x_n)$ push the arguments x_n,\ldots,x_1 onto the stack
 • These are the only variables in this language
Meet The Activation Record (Cont.)

• The stack discipline guarantees that on function exit, sp is the same as it was before the args got pushed (i.e., before function call)

• We need the return address

• It’s also handy to have a pointer to the current activation
 - This pointer lives in register fp (frame pointer)
 - Reason for frame pointer will be clear shortly (at least I hope!)
Layout of the Activation Record

Summary: For this language, an AR with the caller’s frame pointer, the actual parameters, and the return address suffices.

Picture: Consider a call to $f(x,y)$, the AR will be:

```
old FP

  y

  x

AR of f

FP

SP
```
Code Generation for Function Call

- The calling sequence is the sequence of instructions (of both caller and callee) to set up a function invocation.
- New instruction: jal label
 - Jump to label, save address of next instruction in special register $ra
 - On other architectures the return address is stored on the stack by the “call” instruction.
Code Generation for Function Call (Cont.)

cgen(f(e_1, ..., e_n)) =
 sw $fp 0($sp)
 addiu $sp $sp -4
 cgen(e_n)
 sw $a0 0($sp)
 addiu $sp $sp -4
 ...
 cgen(e_1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 jal f_entry

- The caller saves the value of the frame pointer
- Then it pushes the actual parameters in reverse order
- The caller’s jal puts the return address in register $ra
- The AR so far is $4n+4$ bytes long
Code Generation for Function Definition

• New MIPS instruction: \texttt{jr reg}
 - Jump to address in register \texttt{reg}

\begin{verbatim}
cgen(f(x_1,\ldots,x_n) \text{ begin } e \text{ end}) =
f_{\text{entry}}:
 move $fp $sp
 sw $ra 0($sp)
 addiu $sp $sp -4
 cgen(e)
 lw $ra 4($sp)
 addiu $sp $sp frame_size
 lw $fp 0($sp)
 jr $ra
\end{verbatim}

• Note: The frame pointer points to the top, not bottom of the frame

• Callee saves old return address, evaluates its body, pops the return address, pops the arguments, and then restores $fp

• frame_size = 4*n + 8
Calling Sequence: Example for $f(x,y)$

Before call

On entry

After body

After call

FP₁

SP

FP₁

FP₁

SP

FP₁

SP

FP₁

SP
Code Generation for Variables/Parameters

- Variable references are the last construct
- The “variables” of a function are just its parameters
 - They are all in the AR
 - Pushed by the caller

- Problem: Because the stack grows when intermediate results are saved, the variables are not at a fixed offset from \textit{sp}
Code Generation for Variables/Parameters

• Solution: use the frame pointer
 - Always points to the return address on the stack
 - Since it does not move, it can be used to find the variables

• Let \(\mathbf{x}_i \) be the \(\text{i}^{\text{th}} \) \((i = 1, \ldots, n)\) formal parameter of the function for which code is being generated

\[
c\text{gen}(x_i) = lw \ $a0 \ \text{offset}($fp) \quad \text{(offset} = 4*i \text{)}
\]
Code Generation for Variables/Parameters

• Example: For a function \(f(x,y) \) begin e end the activation and frame pointer are set up as follows (when evaluating \(e \)):

\[
\begin{array}{c|c|c|c}
\text{old FP} & y & x & \text{RA} \\
\hline
\text{FP} & \text{SP} & & \\
\end{array}
\]

• \(x \) is at \($fp + 4 \)
• \(y \) is at \($fp + 8 \)
Activation Record & Code Generation Summary

• The activation record must be designed together with the code generator

• Code generation can be done by recursive traversal of the AST
Discussion

- Production compilers do different things
 - Emphasis is on keeping values (esp. current stack frame) in registers
 - Intermediate results are laid out in the AR, not pushed and popped from the stack
 - As a result, code generation is often performed in synergy with register allocation

Next time: code generation for temporaries and a deeper look into parameter passing mechanisms