Outline

- Informal sketch of lexical analysis
 - Identifies tokens in input string

- Issues in lexical analysis
 - Lookahead
 - Ambiguities

- Specifying lexical analyzers (lexers)
 - Regular expressions
 - Examples of regular expressions

Lexical Analysis

- What do we want to do? Example:
  ```
  if (i == j)
  then
    z = 0;
  else
    z = 1;
  ```

- The input is just a string of characters:
  ```
  if (i == j)\nthen\n  tz = 0;\nelse\n  tz = 1;
  ```

- Goal: Partition input string into substrings
 - where the substrings are tokens
 - and classify them according to their role

What's a Token?

- A syntactic category
 - In a natural language:
 noun, verb, adjective, ...

 - In a programming language:
 Identifier, Integer, Keyword, Whitespace, ...

Tokens
- Tokens correspond to sets of strings
 - these sets depend on the programming language
- **Identifier**: strings of letters or digits, starting with a letter
- **Integer**: a non-empty string of digits
- **Keyword**: "else" or "if" or "begin" or …
- **Whitespace**: a non-empty sequence of blanks, newlines, and tabs

What are Tokens Used for?
- Classify program substrings according to role
- Output of lexical analysis is a stream of tokens . . .
- . . . which is input to the parser
- Parser relies on token distinctions
 - An identifier is treated differently than a keyword

Designing a Lexical Analyzer: Step 1
- Define a finite set of tokens
 - Tokens describe all items of interest
 - Choice of tokens depends on language, design of parser
- Recall

  ```
  if (i == j)
  then
      z = 0;
  else
      z = 1;
  ```
- Useful tokens for this expression:
 - Integer, Keyword, Relation, Identifier, Whitespace, (,), =, ;

Designing a Lexical Analyzer: Step 2
- Describe which strings belong to each token
- Recall:
 - **Identifier**: strings of letters or digits, starting with a letter
 - **Integer**: a non-empty string of digits
 - **Keyword**: "else" or "if" or "begin" or …
 - **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
Lexical Analyzer: Implementation

An implementation must do two things:

1. Recognize substrings corresponding to tokens
2. Return the value or lexeme of the token
 - The lexeme is the substring

Example

• Recall:

 if (i == j) \n then \n \t z = 0; \n else \n \t \t z = 1;

• Token-lexeme groupings:
 - Identifier: i, j, z
 - Keyword: if, then, else
 - Relation: ==
 - Integer: 0, 1
 - (,), =, ;
 - (,), =, ; single character of the same name

Why do Lexical Analysis?

• Simplify parsing
 - The lexer usually discards “uninteresting” tokens that don’t contribute to parsing
 - E.g. Whitespace, Comments
 - Converts data early
• Separate out logic to read source files
 - Potentially an issue on multiple platforms
 - Can optimize reading code independently of parser

True Crimes of Lexical Analysis

• Is it as easy as it sounds?
 • Not quite!
 • Look at some programming language history . . .
Lexical Analysis in FORTRAN

- FORTRAN rule: Whitespace is insignificant
- E.g., VAR1 is the same as VAR1

FORTRAN whitespace rule was motivated by inaccuracy of punch card operators

A terrible design! Example

- Consider
 - DO 5 I = 1,25
 - DO 5 I = 1.25

- The first is DO 5 I = 1, 25
- The second is DO5I = 1.25

- Reading left-to-right, the lexical analyzer cannot tell if DO5I is a variable or a DO statement until after “,” is reached

Lexical Analysis in FORTRAN. Lookahead.

Two important points:
1. The goal is to partition the string
 - This is implemented by reading left-to-right, recognizing one token at a time
2. "Lookahead" may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues
 - i vs. if
 - = vs. ==

Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF
can be difficult to determine how to label lexemes
More Modern True Crimes in Scanning

Nested template declarations in C++

```
vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int > myVector)))
```

Review

• The goal of lexical analysis is to
 - Partition the input string into *lexemes* (the smallest program units that are individually meaningful)
 - Identify the token of each lexeme

• Left-to-right scan ⇒ lookahead sometimes required

Next

• We still need
 - A way to describe the lexemes of each token

 - A way to resolve ambiguities
 - Is *if* two variables *i* and *f*?
 - Is *==* two equal signs *==*?

Regular Languages

• There are several formalisms for specifying tokens

 - *Regular languages* are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A *language* Λ over Σ is a set of strings of characters drawn from Σ.

(Σ is called the *alphabet* of Λ)

Examples of Languages

- **Alphabet = English characters**
- **Language = English sentences**
- Not every string on English characters is an English sentence

- **Alphabet = ASCII**
- **Language = C programs**
- Note: ASCII character set is different from English character set

Notation

- Languages are sets of strings
 - Need some notation for specifying which sets of strings we want our language to contain
 - The standard notation for regular languages is *regular expressions*

Atomic Regular Expressions

- **Single character**

 `'c' = \{"c"\}`

- **Epsilon**

 $\varepsilon = \{\"\"\}$
Compound Regular Expressions

- **Union**
 \[A + B = \{ s \mid s \in A \text{ or } s \in B \} \]

- **Concatenation**
 \[AB = \{ ab \mid a \in A \text{ and } b \in B \} \]

- **Iteration**
 \[A^* = \bigcup_{i \geq 0} A^i \text{ where } A^i = A \ldots i \text{ times } \ldots A \]

Regular Expressions

- **Def.** The regular expressions over \(\Sigma \) are the smallest set of expressions including
 \[\varepsilon \]
 \['c' \text{ where } c \in \Sigma \]
 \[A + B \text{ where } A, B \text{ are rexp over } \Sigma \]
 \[AB \]
 \[A^* \text{ where } A \text{ is a rexp over } \Sigma \]

Syntax vs. Semantics

- To be careful, we should distinguish syntax and semantics (meaning) of regular expressions

 \[L(\varepsilon) = \{''\} \]
 \[L('c') = \{"c"\} \]
 \[L(A + B) = L(A) \cup L(B) \]
 \[L(AB) = \{ab \mid a \in L(A) \text{ and } b \in L(B)\} \]
 \[L(A^*) = \bigcup_{i \geq 0} L(A^i) \]

Example: Keyword

Keyword: "else" or "if" or "begin" or ...

'else' + 'if' + 'begin' + ...
Example: Integers

Integer: a non-empty string of digits

digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
integer = digit digit*

Abbreviation: \(A^+ = AA^* \)

Example: Identifier

Identifier: strings of letters or digits, starting with a letter

letter = 'A'+'Z'+'a'+'z'
identifier = letter (letter + digit)*

Is \((letter^* + digit^*) \) the same?

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

\((' ' + \text{'n'} + \text{'t'})^+ \)

Example 1: Phone Numbers

- Regular expressions are all around you!
- Consider +46(0)18-471-1056

\[\Sigma = \text{digits} \cup \{+,-,(),\} \]
country = digit digit
city = digit digit
area = digit digit digit
extension = digit digit digit digit
phone_num = '+'country'('0')'city'−'area'−'extension
Example 2: Email Addresses

- Consider kostis@it.uu.se

\[
\Sigma = \text{letters } \cup \{.,@\}
\]

name = letter^+

address = name '@' name '.' name

Summary

- Regular expressions describe many useful languages
- Regular languages are a language specification
 - We still need an implementation
- Next: Given a string \(s \) and a regular expression \(R \), is \(s \in L(R) \)?
 - A yes/no answer is not enough!
 - Instead: partition the input into tokens
 - We will adapt regular expressions to this goal

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 \(\text{RegExp} \Rightarrow \text{NFA} \Rightarrow \text{DFA} \Rightarrow \text{Tables} \)

Implementation of Lexical Analysis
Notation

• For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

• Union: \(A + B \equiv A | B \)
• Option: \(A + \varepsilon \equiv A? \)
• Range: \('a'+'b'+...+'z'\) \(\equiv [a-z]\)
• Excluded range: complement of \([a-z]\) \(\equiv[^a-z]\)

Regular Expressions ⇒ Lexical Specifications

1. Select a set of tokens
 • Integer, Keyword, Identifier, LeftPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 • Integer = digit+
 • Keyword = 'if' + 'else' + ...
 • Identifier = letter (letter + digit)*
 • LeftPar = '('
 • ...

3. Construct \(R \), a regular expression matching all lexemes for all tokens

 \[R = \text{Keyword} + \text{Identifier} + \text{Integer} + ... = R_1 + R_2 + R_3 + ... \]

Facts: If \(s \in L(R) \) then \(s \) is a lexeme
 - Furthermore \(s \in L(R_j) \) for some "j"
 - This "j" determines the token that is reported

4. Let input be \(x_1...x_n \)
 • \((x_1 ... x_n \) are characters in the language alphabet)
 • For \(1 \leq i \leq n \) check
 \[x_1...x_i \in L(R) \] ?

5. It must be that
 \[x_1...x_i \in L(R_j) \] for some \(i \) and \(j \)
 (if there is a choice, pick the smallest such \(j \))

6. Report token \(j \), remove \(x1...x_i \) from input and go to step 4
How to Handle Spaces and Comments?

1. We could create a token Whitespace

 Whitespace = (' ' + \n + 't')*

 • We could also add comments in there
 • An input " \t\n 555 " is transformed into
 Whitespace Integer Whitespace

2. Lexical analyzer skips spaces (preferred)

 • Modify step 5 from before as follows:
 It must be that \(x_k \ldots x_i \in L(R_j) \) for some \(j \) such that \(x_1 \ldots x_{k-1} \in L(\text{Whitespace}) \)
 • Parser is not bothered with spaces

Ambiguities (1)

• There are ambiguities in the algorithm.
• How much input is used?
• What if \(x_1\ldots x_i \in L(R) \) and also \(x_1\ldots x_k \in L(R) \)
• The “maximal munch” rule: Pick the longest possible substring that matches \(R \)

Ambiguities (2)

• Which token is used?
• What if
 \(x_1\ldots x_i \in L(R_j) \) and also \(x_1\ldots x_i \in L(R_k) \)
• Rule: use rule listed first (\(j \) if \(j < k \))
• Example:
 - \(R_1 = \text{Keyword} \) and \(R_2 = \text{Identifier} \)
 - “if” matches both
 - Treats “if” as a keyword not an identifier

Error Handling

• What if
 No rule matches a prefix of input?
• Problem: Can’t just get stuck …
• Solution:
 - Write a rule matching all “bad” strings
 - Put it last
• Lexical analysis tools allow the writing of:
 \(R = R_1 + \ldots + R_n + \text{Error} \)
 - Token Error matches if nothing else matches
Summary

• Regular expressions provide a concise notation for string patterns
• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
• Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)

Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

• Regular expressions for specification
• Finite automata for implementation
 (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a recognizer for the strings of a regular language

A finite automaton consists of
 - A finite input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions $\text{state} \rightarrow \text{input} \rightarrow \text{state}$

Finite Automata

• Transition $s_1 \rightarrow^a s_2$
• Is read
 In state s_1 on input “a” go to state s_2
• If end of input
 - If in accepting state \Rightarrow accept
• Otherwise
 - If no transition is possible \Rightarrow reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition

A Simple Example

- A finite automaton that accepts only “1”

Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- What language does this recognize?
And Another Example

• Alphabet still { 0, 1 }
• The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state

Epsilon Moves

• Another kind of transition: ε-moves
• Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
• Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
• Finite automata have finite memory
 - Enough to only encode the current state

Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input
• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

- An NFA can get into multiple states

Input:
0
1
1
0
1 0 1

Rule: NFA accepts an input if it can get in a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA
- DFA can be exponentially larger than NFA (contrary to what is shown in the above example)

Regular Expressions to Finite Automata

- High-level sketch

Lexical Specification

Table-driven Implementation of DFA
Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

 ![Diagram](image1)

 i.e. our automata have one start and one accepting state

- For ε

 ![Diagram](image2)

- For input a

 ![Diagram](image3)

Regular Expressions to NFA (2)

- For AB

 ![Diagram](image4)

- For $A + B$

 ![Diagram](image5)

Regular Expressions to NFA (3)

- For A^*

 ![Diagram](image6)

Example of Regular Expression → NFA conversion

- Consider the regular expression $(1+0)^*1$

- The NFA is

 ![Diagram](image7)
NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 = a non-empty subset of states of the NFA
- Start state
 = the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow^a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 - considering ε-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N - 1 = \text{finitely many}$

NFA to DFA Example

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$
- DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>

Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as lex, ML-Lex, flex or jlex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.
- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.