Review of Parsing

- Given a language \(L(G) \), a parser consumes a sequence of tokens \(s \) and produces a parse tree.
- **Issues:**
 - How do we recognize that \(s \in L(G) \)?
 - A parse tree of \(s \) describes how \(s \in L(G) \).
 - Ambiguity: more than one parse tree (possible interpretation) for some string \(s \).
 - Error: no parse tree for some string \(s \).
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens.
- The rest of the compiler needs a structural representation of the program.
- **Abstract syntax trees**
 - Like parse trees but ignore some details.
 - Abbreviated as AST.

Abstract Syntax Trees (Cont.)

- Consider the grammar:
 \[
 E \rightarrow \text{int} \mid (E) \mid E + E
 \]
- And the string:
 \(5 + (2 + 3) \).
- After lexical analysis (a list of tokens):
 \[
 \text{int}_5 \text{+} (\text{int}_2 \text{+} \text{int}_3)
 \]
- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ASTs
- Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
 - Written as: \(X \rightarrow Y_1 \ldots Y_n \) \{ action \}
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

- Consider the grammar
 \[
 E \rightarrow \text{int} \mid E + E \mid (E)
 \]
- For each symbol \(X \) define an attribute \(X.\text{val} \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression's value (which is computed from values of subexpressions)
- We annotate the grammar with actions:
 \[
 \begin{align*}
 E &\rightarrow \text{int} \quad \{ E.\text{val} = \text{int}.\text{val} \} \\
 | \quad E_1 + E_2 &\quad \{ E.\text{val} = E_1.\text{val} + E_2.\text{val} \} \\
 | \quad (E_1) &\quad \{ E.\text{val} = E_1.\text{val} \}
 \end{align*}
 \]
Semantic Actions: An Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: int5 '+ (' int2 '+' int3 ')

Productions

- \[E \rightarrow E_1 + E_2 \]
- \[E_1 \rightarrow \text{int}_5 \]
- \[E_2 \rightarrow (E_3) \]
- \[E_3 \rightarrow E_4 + E_5 \]
- \[E_4 \rightarrow \text{int}_2 \]
- \[E_5 \rightarrow \text{int}_3 \]

Equations

- \[E\.val = E_1\.val + E_2\.val \]
- \[E_1\.val = \text{int}_5\.val = 5 \]
- \[E_2\.val = E_3\.val \]
- \[E_3\.val = E_4\.val + E_5\.val \]
- \[E_4\.val = \text{int}_2\.val = 2 \]
- \[E_5\.val = \text{int}_3\.val = 3 \]

Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

- Example:
 - \[E_3\.val = E_4\.val + E_5\.val \]
 - Must compute \(E_4\.val \) and \(E_5\.val \) before \(E_3\.val \)
 - We say that \(E_3\.val \) depends on \(E_4\.val \) and \(E_5\.val \)

- The parser must find the order of evaluation

Dependency Graph

- Each node labeled with a non-terminal \(E \) has one slot for its \(\text{val} \) attribute
- Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

- Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

- Synthesized attributes
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called S-attributed grammars
 - Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree

- Example: a line calculator

A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid P \ L \]

Attributes for the Line Calculator

- Each E has a synthesized attribute val
 - Calculated as before
- Each L has a synthesized attribute val
 \[L \rightarrow E = \{ L.val = E.val \} \]
 \[\mid + E = \{ L.val = E.val + L.prev \} \]
- We need the value of the previous line
- We use an inherited attribute L.prev
Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute \(\text{val} \)
 - The value of its last line
 \[P \rightarrow \varepsilon \quad \{ P.\text{val} = 0 \} \]
 \[| P_1 L \quad \{ P.\text{val} = L.\text{val}; \]
 \[\quad \quad \quad \quad \quad \quad L.\text{prev} = P_1.\text{val} \} \]

- Each L has an inherited attribute \(\text{prev} \)
 - \(L.\text{prev} \) is inherited from sibling \(P_1.\text{val} \)

- Example ...

Example of Inherited Attributes

- \(\text{val} \) synthesized
- \(\text{prev} \) inherited
- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs

- And many other things as well
 - Also used for type checking, code generation, ...

- Process is called syntax-directed translation
 - Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

\[
mk\text{leaf}(n) = \begin{array}{c} n \end{array}
\]

\[
mk\text{plus}(T_1, T_2) = \begin{array}{c} PLUS \end{array}
\]

[Diagram of AST construction]
Constructing a Parse Tree

- We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int.lexval is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} \quad \{ \text{E.ast} = \text{mkleaf(int.lexval)} \} \\
| \quad E_1 + E_2 \quad \{ \text{E.ast} = \text{mkplus(E_1.ast, E_2.ast)} \} \\
| \quad (E_1) \quad \{ \text{E.ast} = E_1.ast \}
\]

Parse Tree Example

- Consider the string int\textsubscript{5} + '(' int\textsubscript{2} + ' int\textsubscript{3} ')
- A bottom-up evaluation of the ast attribute:
 \[
 \text{E.ast} = \text{mkplus(mkleaf(5), mkplus(mkleaf(2), mkleaf(3))}
 \]

Review of Abstract Syntax Trees

- We can specify language syntax using CFG.
- The parser answers whether \(s \in L(G)\)
- ... and builds a parse tree
- ... which it converts to an AST
- ... and passes on to the rest of the compiler.

- In the next “parsing” lectures:
 - How do we answer \(s \in L(G)\) and build a parse tree?
 - After that: from AST to assembly language.

Second-Half of Lecture: Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- These slides: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

• Terminals are seen in order of appearance in the token stream:
 \[t_2 \ t_5 \ t_6 \ t_8 \ t_9 \]

• The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing: Example

• Consider the grammar
 \[
 E \rightarrow T \cdot E \mid T \\
 T \rightarrow (E) \mid \text{int} \mid \text{int} \cdot T
 \]

• Token stream is: \[\text{int}_5 \cdot \text{int}_2 \]

• Start with top-level non-terminal \(E \)

• Try the rules for \(E \) in order

Recursive Descent Parsing: Example (Cont.)

• Try \(E_0 \rightarrow T_1 \cdot E_2 \)

 Token stream: \[\text{int}_5 \cdot \text{int}_2 \]

• Then try a rule for \(T_1 \rightarrow (E_3) \)
 - But \((\) does not match input token \(\text{int}_5 \)

• Try \(T_1 \rightarrow \text{int} \). Token matches.
 - But \(\cdot \) after \(T_1 \) does not match input token \(\ast \)

• Try \(T_1 \rightarrow \text{int} \cdot T_2 \)
 - This will match and will consume the two tokens.
 • Try \(T_2 \rightarrow \text{int} \) (matches) but \(\cdot \) after \(T_1 \) will be unmatched
 • Try \(T_2 \rightarrow \text{int} \cdot T_3 \) but \(\ast \) does not match with end-of-input

• Has exhausted the choices for \(T_1 \)
 - Backtrack to choice for \(E_0 \)

Recursive Descent Parsing: Example (Cont.)

• Try \(E_0 \rightarrow T_1 \)

 Token stream: \[\text{int}_5 \cdot \text{int}_2 \]

• Follow same steps as before for \(T_1 \)
 - And succeed with \(T_1 \rightarrow \text{int}_5 \cdot T_2 \) and \(T_2 \rightarrow \text{int}_2 \)
 - With the following parse tree

\[
E_0 \\
| \\
T_1 \\
| \\
\text{int}_5 \\
\ast \\
T_2 \\
| \\
\text{int}_2 \\
E \rightarrow T \cdot E \mid T \\
T \rightarrow (E) \mid \text{int} \mid \text{int} \cdot T
\]
Recursive Descent Parsing: Notes

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- But does not always work ...

Elimination of Left Recursion

- Consider the left-recursive grammar
 \[S \rightarrow S \alpha \mid \beta \]
- Generates all strings starting with a \(\beta \) and followed by any number of \(\alpha \)'s
- The grammar can be rewritten using right recursion
 \[S \rightarrow \beta \ S' \]
 \[S' \rightarrow \alpha \ S' \mid \epsilon \]

When Recursive Descent Does Not Work

- Consider a production \(S \rightarrow S \alpha \)
  ```
  bool S1() { return S() && term(a); }
  bool S() { return S1(); }
  ```
- \(S() \) will get into an infinite loop
- \(S \rightarrow \star \ S \alpha \) for some \(\alpha \)
- A left-recursive grammar has a non-terminal \(S \)
- Recursive descent does not work in such cases
 - It goes into an infinite loop

More Elimination of Left-Recursion

- In general
 \[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]
- All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)
- Rewrite as
 \[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]
 \[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \epsilon \]
General Left Recursion

- The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow^* S \beta \alpha \]
- This left-recursion can also be eliminated
 [See a Compilers book for a general algorithm]

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of productions
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions
 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow (E) \mid \text{int} \mid \text{int} * T
 \]

- Hard to predict because
 - For \(T\) two productions start with \text{int}
 - For \(E\) it is not clear how to predict

- A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

- Recall the grammar
 \[
 E \rightarrow T + E \mid T \\
 T \rightarrow (E) \mid \text{int} \mid \text{int} * T
 \]

- Factor out common prefixes of productions
 \[
 E \rightarrow T \ X \\
 X \rightarrow + \ E \mid \varepsilon \\
 T \rightarrow (E) \mid \text{int} \ Y \\
 Y \rightarrow * \ T \mid \varepsilon
 \]

- This grammar is equivalent to the original one

LL(1) Parsing Table Example

- Left-factored grammar
 \[
 E \rightarrow T \ X \\
 X \rightarrow + \ E \mid \varepsilon \\
 T \rightarrow (E) \mid \text{int} \ Y \\
 Y \rightarrow * \ T \mid \varepsilon
 \]

- The LL(1) parsing table ($ is the end marker):

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>int Y</td>
<td>+E</td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* T</td>
<td></td>
<td>\varepsilon</td>
<td>\varepsilon</td>
<td>\varepsilon</td>
</tr>
</tbody>
</table>

LL(1) Parsing Table Example (Cont.)

- Consider the \([E, \text{int}]\) entry
 - “When current non-terminal is \(E\) and next input is \text{int}, use production \(E \rightarrow T \ X\)”
 - This production can generate an \text{int} in the first place

- Consider the \([Y,+]\) entry
 - “When current non-terminal is \(Y\) and current token is +, get rid of \(Y\)”
 - \(Y\) can be followed by + only in a derivation in which \(Y \rightarrow \varepsilon\)”
LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - “There is no way to derive a string starting with * from non-terminal E”

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal X
 - We look at the next token a
 - And choose the production shown at [X,a]
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
initialize stack ← <S $> and next
repeat
  case stack of
    <X, rest> : if T[X,*next] == Y_1...Y_n
                then stack ← <Y_1...Y_n rest>;
                else error();
    <t, rest> : if t == *next++
                then stack ← <rest>;
                else error();
  until stack == <>
```

LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>T X</td>
<td>T X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>+ E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td>(E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* T</td>
<td></td>
<td></td>
<td></td>
<td>$</td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm where no table entry is multiply defined.

- Once we have the table:
 - The parsing is simple and fast
 - No backtracking is necessary

- We want to generate parsing tables from CFG.

Computing First Sets

Definition

\[
\text{First}(X) = \{ t \mid X \rightarrow^* t \alpha \} \cup \{ \varepsilon \mid X \rightarrow^* \varepsilon \}
\]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \) and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \rightarrow A_1 \ldots A_n \alpha \) and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)

Computing First Sets (Cont.)

If \(A \rightarrow \alpha \), where in the line of \(A \) do we place \(\alpha \)?

- In the column of \(t \) where \(t \) can start a string derived from \(\alpha \):
 - \(\alpha \rightarrow^* t \beta \)
 - We say that \(t \in \text{First}(\alpha) \)

- In the column of \(t \) if \(\alpha \) is \(\varepsilon \) and \(t \) can follow an \(A \):
 - \(S \rightarrow^* \beta A \triangleleft \delta \)
 - We say \(t \in \text{Follow}(A) \)

More constructive algorithm

1. \(\text{First}(t) = \{ t \} \)
2. For all productions \(X \rightarrow A_1 \ldots A_n \)
 - Add \(\text{First}(A_i) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_i) \).
 - Add \(\text{First}(A_2) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_2) \).
 - ...
 - Add \(\text{First}(A_n) - \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_n) \).
 - Add \(\{ \varepsilon \} \) to \(\text{First}(X) \).
First Sets: Example

- Recall the grammar
 \[E \rightarrow TX \]
 \[T \rightarrow (E) \mid \text{int} Y \]
 \[X \rightarrow +E \mid \epsilon \]
 \[Y \rightarrow *T \mid \epsilon \]

- First sets
 \[\text{First}(\ (\) = \{ \(\) \} \]
 \[\text{First}(\)) = \{ \) \} \]
 \[\text{First}(\ \text{int}) = \{ \text{int} \} \]
 \[\text{First}(\ +) = \{ + \} \]
 \[\text{First}(\ *) = \{ * \} \]

Computing Follow Sets

Definition
\[\text{Follow}(X) = \{ t \mid S \rightarrow^* \beta X t \delta \} \]

Intuition
- If \(X \rightarrow A B \) then \(\text{First}(B) \subseteq \text{Follow}(A) \)
 and \(\text{Follow}(X) \subseteq \text{Follow}(B) \)
- Also if \(B \rightarrow^* \epsilon \) then \(\text{Follow}(X) \subseteq \text{Follow}(A) \)
- If \(S \) is the start symbol then \($ \in \text{Follow}(S) \)

Computing Follow Sets (Cont.)

Algorithm sketch
1. \($ \in \text{Follow}(S) \)
2. \(\text{First}(\beta) - \{ \epsilon \} \subseteq \text{Follow}(X) \)
 For each production \(A \rightarrow \alpha X \beta \)
3. \(\text{Follow}(A) \subseteq \text{Follow}(X) \)
 For each production \(A \rightarrow \alpha X \beta \) where \(\epsilon \in \text{First}(\beta) \)

More constructive algorithm
1. First compute the First sets for all non-terminals
2. If \(S \) is the start symbol, add \($ \) to \(\text{Follow}(S) \)
3. For all productions \(Y \rightarrow \ldots \ X A_1 \ldots A_n \)
 - Add \(\text{First}(A_1) - \{ \epsilon \} \) to \(\text{Follow}(X) \). Stop if \(\epsilon \notin \text{First}(A_1) \).
 - Add \(\text{First}(A_2) - \{ \epsilon \} \) to \(\text{Follow}(X) \). Stop if \(\epsilon \notin \text{First}(A_2) \).
 - ...
 - Add \(\text{First}(A_n) - \{ \epsilon \} \) to \(\text{Follow}(X) \). Stop if \(\epsilon \notin \text{First}(A_n) \).
 - Add \(\text{Follow}(Y) \) to \(\text{Follow}(X) \).
Follow Sets: Example

Recall the grammar

\[
\begin{align*}
E & \rightarrow T X & X & \rightarrow + E | \varepsilon \\
T & \rightarrow (E) | \text{int} \ Y & Y & \rightarrow * T | \varepsilon
\end{align*}
\]

Follow sets

\[
\begin{align*}
\text{Follow}(+) &= \{ \text{int}, (\} \\
\text{Follow}(*&) &= \{ \text{int}, (\} \\
\text{Follow}(()) &= \{ \text{int, (} \} \\
\text{Follow}((E)) &= \{), $ \} \\
\text{Follow}(X) &= \{ , $ \} \\
\text{Follow}(T) &= \{ +,) , $ \} \\
\text{Follow}(Y) &= \{ +,) , $ \} \\
\text{Follow}(\text{int}) &= \{ *, +,) , $ \}
\end{align*}
\]

Constructing LL(1) Parsing Tables

- Construct a parsing table \(T \) for CFG \(G \)

- For each production \(A \rightarrow \alpha \) in \(G \) do:
 - For each terminal \(t \in \text{First}(\alpha) \) do
 \[T[A, t] = \alpha \]
 - If \(\varepsilon \in \text{First}(\alpha) \), for each \(t \in \text{Follow}(A) \) do
 \[T[A, t] = \alpha \]
 - If \(\varepsilon \in \text{First}(\alpha) \) and \($ \in \text{Follow}(A) \) do
 \[T[A, $] = \alpha \]

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then \(G \) is not LL(1)
 - If \(G \) is ambiguous
 - If \(G \) is left recursive
 - If \(G \) is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 Predictive parsing (LL(1))
- Next time: a more powerful parsing strategy