Type Checking

Outline

• General properties of type systems
• Types in programming languages
• Notation for type rules
 – Logical rules of inference
• Common type rules

Static Checking

• Refers to the compile-time checking of programs in order to ensure that the semantic conditions of the language are being followed

Examples of static checks include:
 - Type checks
 - Flow-of-control checks
 - Uniqueness checks
 - Name-related checks

Static Checking (Cont.)

Flow-of-control checks: statements that cause flow of control to leave a construct must have some place where control can be transferred; e.g., break statements in C

Uniqueness checks: a language may dictate that in some contexts, an entity can be defined exactly once; e.g., identifier declarations, labels, values in case expressions

Name-related checks: Sometimes the same name must appear two or more times; e.g., in Ada a loop or block can have a name that must then appear both at the beginning and at the end
Types and Type Checking

- A **type** is a set of values together with a set of operations that can be performed on them.
- The purpose of **type checking** is to verify that operations performed on a value are in fact permissible.
- The type of an identifier is typically available from declarations, but we may have to keep track of the type of intermediate expressions.

Type Expressions and Type Constructors

A language usually provides a set of **base types** that it supports together with ways to construct other types using **type constructors**.

Through **type expressions** we are able to represent types that are defined in a program.

Type Expressions

- A base type is a type expression.
- A type name (e.g., a record name) is a type expression.
- A type constructor applied to type expressions is a type expression. E.g.,
 - **arrays**: If T is a type expression and I is a range of integers, then array(I,T) is a type expression.
 - **records**: If T1, ..., Tn are type expressions and f1, ..., fn are field names, then record((f1,T1),..., (fn,Tn)) is a type expression.
 - **pointers**: If T is a type expression, then pointer(T) is a type expression.
 - **functions**: If T1, ..., Tn, and T are type expressions, then so is (T1, ..., Tn) → T.

Notions of Type Equivalence

Name equivalence: In many languages, e.g. Pascal, types can be given names. Name equivalence views each distinct name as a distinct type. So, two type expressions are name equivalent if and only if they are identical.

Structural equivalence: Two expressions are structurally equivalent if and only if they have the same structure; i.e., if they are formed by applying the same constructor to structurally equivalent type expressions.
Example of Type Equivalence

In the Pascal fragment

\begin{verbatim}
 type nextptr = ^node;
 prevptr = ^node;
 var p : nextptr;
 q : prevptr;
\end{verbatim}

\(p\) is not name equivalent to \(q\),
but \(p\) and \(q\) are structurally equivalent.

Static Type Systems & Their Expressiveness

- A static type system enables a compiler to detect many common programming errors
- The cost is that some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking
 - But more expressive type systems are also more complex

Compile-time Representation of Types

- Need to represent type expressions in a way that is both easy to construct and easy to check

Approach 1: Type Graphs
- Basic types can have predefined “internal values”, e.g., small integer values
- Named types can be represented using a pointer into a hash table
- Composite type expressions: the node for \(f(T_1, \ldots, T_n)\) contains a value representing the type constructor \(f\), and pointers to the nodes for the expressions \(T_1, \ldots, T_n\)

Compile-time Representation of Types (Cont.)

Example:

\begin{verbatim}
 var x, y : array[1..42] of integer;
\end{verbatim}
Approach 2: Type Encodings

Basic types use a predefined encoding of the low-order bits

<table>
<thead>
<tr>
<th>BASIC TYPE</th>
<th>ENCODING</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>0000</td>
</tr>
<tr>
<td>char</td>
<td>0001</td>
</tr>
<tr>
<td>integer</td>
<td>0010</td>
</tr>
</tbody>
</table>

The encoding of a type expression $op(T)$ is obtained by concatenating the bits encoding op to the left of the encoding of T. E.g.:

<table>
<thead>
<tr>
<th>TYPE EXPRESSION</th>
<th>ENCODING</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>00 00 00 0001</td>
</tr>
<tr>
<td>array(char)</td>
<td>00 00 01 0001</td>
</tr>
<tr>
<td>ptr(array(char))</td>
<td>00 10 01 0001</td>
</tr>
<tr>
<td>ptr(ptr(array(char)))</td>
<td>10 10 01 0001</td>
</tr>
</tbody>
</table>

Types in an Example Programming Language

- Let's assume that types are:
 - integers & floats (base types)
 - arrays of a base type
 - booleans (used in conditional expressions)

- The user declares types for all identifiers

- The compiler infers types for expressions
 - Infers a type for every expression

Type Checking and Type Inference

Type Checking is the process of verifying fully typed programs.

Type Inference is the process of filling in missing type information.

- The two are different, but are often used interchangeably

Compile-Time Representation of Types: Notes

- Type encodings are simple and efficient.
- On the other hand, named types and type constructors that take more than one type expression as argument are hard to represent as encodings. Also, recursive types cannot be represented directly.
- Recursive types (e.g., lists, trees) are not a problem for type graphs: the graph simply contains a cycle.
Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)

- The appropriate formalism for type checking is logical rules of inference

Why Rules of Inference?

- Inference rules have the form
 If Hypothesis is true, then Conclusion is true

- Type checking computes via reasoning
 If E_1 and E_2 have certain types, then E_3 has a certain type

- Rules of inference are a compact notation for “If-Then” statements

From English to an Inference Rule

- The notation is easy to read (with practice)

- Start with a simplified system and gradually add features

- Building blocks:
 - Symbol \land is “and”
 - Symbol \Rightarrow is “if-then”
 - $x:T$ is “x has type T”

From English to an Inference Rule (2)

If e_1 has type int and e_2 has type int, then $e_1 + e_2$ has type int

$(e_1 \text{ has type int } \land e_2 \text{ has type int}) \Rightarrow e_1 + e_2 \text{ has type int}$
From English to an Inference Rule (3)

The statement

\[(e_1: \text{int} \land e_2: \text{int}) \Rightarrow e_1 + e_2: \text{int}\]

is a special case of

\[\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n \Rightarrow \text{Conclusion}\]

This is an inference rule

Notation for Inference Rules

- By tradition inference rules are written

\[\vdash \text{Hypothesis}_1 \ldots \vdash \text{Hypothesis}_n \vdash \text{Conclusion}\]

- Type rules have hypotheses and conclusions of the form:

\[\vdash e: T\]

- \vdash means “it is provable that . . .”

Two Rules

- i is an integer

\[\vdash i: \text{int} \quad [\text{Int}]\]

\[\vdash e_1: \text{int} \quad \vdash e_2: \text{int} \quad \vdash e_1 + e_2: \text{int} \quad [\text{Add}]\]

Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions

- By filling in the templates, we can produce complete typings for expressions
Example: $1 + 2$

<table>
<thead>
<tr>
<th>1 is an integer</th>
<th>2 is an integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vdash 1 : \text{int}$</td>
<td>$\vdash 2 : \text{int}$</td>
</tr>
<tr>
<td>$\vdash 1 + 2 : \text{int}$</td>
<td></td>
</tr>
</tbody>
</table>

Soundness

- A type system is *sound* if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T

- We only want sound rules
 - But some sound rules are better than others
 - Consider the rule:

 i is an integer
 $\vdash i : \text{number}$
 - This rule loses some information

Type Checking Proofs

- Type checking proves facts $e : T$
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each kind of AST node

- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the type of e

- Types are computed in a bottom-up pass over the AST

Rules for Constants

<table>
<thead>
<tr>
<th>$\vdash \text{true} : \text{bool}$ [Bool]</th>
<th>$\vdash \text{false} : \text{bool}$ [Bool]</th>
</tr>
</thead>
<tbody>
<tr>
<td>f is a floating point number</td>
<td>$\vdash f : \text{float}$ [Float]</td>
</tr>
</tbody>
</table>
Two More Rules

├
 └ e : bool
 └ not e : bool [Not]

├
 └ e1
 └ e2 : T [While]

A Problem

• What is the type of a variable reference?
 • x is an identifier [Var]

• See the problem?
 • The local, structural rule does not carry enough information to give x a type

A Solution

• Put more information in the rules!

• A type environment gives types for free variables
 - A type environment is a function from Identifiers to Types
 - A variable is free in an expression if it is not defined within the expression

Type Environments

Let E be a function from Identifiers to Types

The sentence E ├ e : T is read:
 Under the assumption that variables have the types given by E, it is provable that the expression e has the type T
Modified Rules

The type environment is added to the earlier rules:

\[
\begin{align*}
& \text{i is an integer} & [\text{Int}] \\
& \quad \vdash i : \text{int} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} & [\text{Add}] \\
& \quad \vdash e_1 + e_2 : \text{int} \\
\end{align*}
\]

New Rules

And we can now write a rule for variables:

\[
\begin{align*}
& \quad \vdash x : T & [\text{Var}] \\
& \quad E(x) = T \\
\end{align*}
\]

Type Checking of Expressions

Production Semantic Rules

<table>
<thead>
<tr>
<th>Production</th>
<th>Semantic Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow \text{id})</td>
<td>{ if (declared(id.name)) then (E.type := \text{lookup(id.name)\text{.type} }) else (E.type := \text{error();}) }</td>
</tr>
<tr>
<td>(E \rightarrow \text{int})</td>
<td>{ (E.type := \text{integer};) }</td>
</tr>
<tr>
<td>(E \rightarrow \text{E1 + E2})</td>
<td>{ if (E1.type == integer AND E2.type == integer) then (E.type := \text{integer; }) else (E.type := \text{error();}) }</td>
</tr>
</tbody>
</table>

Type Checking of Expressions (Cont.)

May have automatic *type coercion*, e.g.

<table>
<thead>
<tr>
<th>E1.type</th>
<th>E2.type</th>
<th>E.type</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td>integer</td>
<td>float</td>
<td>float</td>
</tr>
<tr>
<td>float</td>
<td>integer</td>
<td>float</td>
</tr>
<tr>
<td>float</td>
<td>float</td>
<td>float</td>
</tr>
</tbody>
</table>
Type Checking of Statements: Assignment

Semantic Rules:

\[S \rightarrow \text{Lval} := \text{Rval} \quad \text{\{check_types(Lval.type,Rval.type)\}} \]

Note that in general Lval can be a variable or it may be a more complicated expression, e.g., a dereferenced pointer, an array element, a record field, etc.

Type checking involves ensuring that:
- \text{Lval} is a type that can be assigned to, e.g., it is not a function or a procedure
- the types of \text{Lval} and \text{Rval} are “compatible”, i.e., that the language rules provide for coercion of the type of \text{Rval} to the type of \text{Lval}

Type Checking of Statements: Loops, Conditionals

Semantic Rules:

\[\text{Loop} \rightarrow \text{while } E \text{ do } S \quad \text{\{check_types(E.type,bool)\}} \]

\[\text{Cond} \rightarrow \text{if } E \text{ then } S_1 \text{ else } S_2 \quad \text{\{check_types(E.type,bool)\}} \]