The Main Idea of Today’s Lecture

We can emit stack-machine-style code for expressions via recursion

(We will use MIPS assembly as our target language)

Lecture Outline

• What are stack machines?
• The MIPS assembly language
• A simple source language ("Mini Bar")
• A stack machine implementation of the simple language

Stack Machines

• A simple evaluation model
• No variables or registers
• A stack of values for intermediate results
• Each instruction:
 - Takes its operands from the top of the stack
 - Removes those operands from the stack
 - Computes the required operation on them
 - Pushes the result onto the stack
Example of Stack Machine Operation

The addition operation on a stack machine

Example of a Stack Machine Program

• Consider two instructions
 - push i - place the integer i on top of the stack
 - add - pop topmost two elements, add them and put the result back onto the stack

• A program to compute 7 + 5:
 push 7
 push 5
 add

Why Use a Stack Machine?

• Each operation takes operands from the same place and puts results in the same place
• This means a uniform compilation scheme
• And therefore a simpler compiler

Why Use a Stack Machine?

• Location of the operands is implicit
 - Always on the top of the stack
• No need to specify operands explicitly
• No need to specify the location of the result
• Instruction is “add” as opposed to “add r1, r2” (or “add rd, rij, rj2”)
 ⇒ Smaller encoding of instructions
 ⇒ More compact programs
• This is one of the reasons why Java Bytecode uses a stack evaluation model
Optimizing the Stack Machine

• The add instruction does 3 memory operations
 - Two reads and one write to the stack
 - The top of the stack is frequently accessed
• Idea: keep the top of the stack in a dedicated register (called the “accumulator”)
 - Register accesses are faster (why?)
• The “add” instruction is now
 \[\text{acc} \leftarrow \text{acc} + \text{top_of_stack} \]
 - Only one memory operation!

Stack Machine with Accumulator

Invariants

• The result of computing an expression is always placed in the accumulator
• For an operation \(\text{op}(e_1,\ldots,e_n) \) compute each \(e_i \) and then push the accumulator (= the result of evaluating \(e_i \)) onto the stack
• After the operation pop \(n-1 \) values
• After computing an expression the stack is as before

Stack Machine with Accumulator: Example

Compute 7 + 5 using an accumulator

\[
\begin{array}{c|c|c|c}
\text{Code} & \text{Acc} & \text{Stack} \\
\hline
? & <init> & \hline
\hline
\text{acc} \leftarrow 3 & 3 & <init> \\
\text{push acc} & 3 & 3, <init> \\
\text{acc} \leftarrow 7 & 7 & 3, <init> \\
\text{push acc} & 7 & 7, 3, <init> \\
\text{acc} \leftarrow 5 & 5 & 7, 3, <init> \\
\text{acc} \leftarrow \text{acc} + \text{top_of_stack} & 12 & 7, 3, <init> \\
\text{pop} & 12 & 3, <init> \\
\text{acc} \leftarrow \text{acc} + \text{top_of_stack} & 15 & 3, <init> \\
\text{pop} & 15 & <init>
\end{array}
\]
Notes

• It is very important that the stack is preserved across the evaluation of a subexpression
 - Stack before the evaluation of $7 + 5$ is $3, <\text{init}>$
 - Stack after the evaluation of $7 + 5$ is $3, <\text{init}>$
 - The first operand is on top of the stack

From Stack Machines to MIPS

• The compiler generates code for a stack machine with accumulator
 • We want to run the resulting code on the MIPS processor (or simulator)
 • We simulate the stack machine instructions using MIPS instructions and registers

Simulating a Stack Machine on the MIPS...

• The accumulator is kept in MIPS register $a0$
• The stack is kept in memory
• The stack grows towards lower addresses
 - Standard convention on the MIPS architecture
• The address of the next location on the stack is kept in MIPS register sp
 - Guess: what does “sp” stand for?
 - The top of the stack is at address $sp + 4$

MIPS Assembly

MIPS architecture
 - Prototypical Reduced Instruction Set Computer (RISC) architecture
 - Arithmetic operations use registers for operands and results
 - Must use load and store instructions to use operands and store results in memory
 - 32 general purpose registers (32 bits each)
 • We will use $sp, a0$ and $t1$ (a temporary register)

Read the SPIM documentation for more details
A Sample of MIPS Instructions

- **lw reg₁, offset(reg₂)**
 "load word"
 - Load 32-bit word from address \(\text{reg}_2 + \text{offset} \) into \(\text{reg}_1 \)
- **add reg₁, reg₂, reg₃**
 - \(\text{reg}_1 \leftarrow \text{reg}_2 + \text{reg}_3 \)
- **sw reg₁, offset(reg₂)**
 "store word"
 - Store 32-bit word in \(\text{reg}_1 \) at address \(\text{reg}_2 + \text{offset} \)
- **addiu reg₁, reg₂, imm**
 "add immediate"
 - \(\text{reg}_1 \leftarrow \text{reg}_2 + \text{imm} \)
 - "u" means overflow is not checked
- **li reg, imm**
 "load immediate"
 - \(\text{reg} \leftarrow \text{imm} \)

MIPS Assembly: Example

- The stack-machine code for \(7 + 5 \) in MIPS:

  ```
  acc ← 7 li $a0 7
  push acc sw $a0 0($sp)
  addiu $sp $sp -4
  acc ← 5 li $a0 5
  acc ← acc + top_of_stack lw $t1 4($sp)
  add $a0 $a0 $t1
  pop addiu $sp $sp 4
  ```

- We now generalize this to a simple language...

A Small Language

- A language with only integers and integer operations ("Mini Bar")

 \[
 P \rightarrow FP | F \\
 F \rightarrow \text{id(ARGS)} \begin{array} \text{begin} \end{array} E \end{array} \begin{array} \text{end} \end{array} \]

 \[
 \text{ARGS} \rightarrow \text{id}, \text{ARGS} | \text{id} \\
 E \rightarrow \text{int} | \text{id} | \text{if } E_1 = E_2 \text{ then } E_3 \text{ else } E_4 \\
 | E_1 + E_2 | E_1 - E_2 | \text{id(ES)} \\
 \text{ES} \rightarrow E, \text{ES} | E
 \]

A Small Language (Cont.)

- The first function definition \(f \) is the "main" routine
- Running the program on input \(i \) means computing \(f(i) \)
- Program for computing the Fibonacci numbers:

  ```
  \text{fib}(x) \\
  \text{begin} \\
  \text{if } x = 1 \text{ then } 0 \text{ else} \\
  \text{if } x = 2 \text{ then } 1 \text{ else } \text{fib}(x - 1) + \text{fib}(x - 2) \\
  \text{end}
  ```
Code Generation Strategy

- For each expression e we generate MIPS code that:
 - Computes the value of e in $a0$
 - Preserves sp and the contents of the stack
- We define a code generation function $cgen(e)$ whose result is the code generated for e
 - $cgen(e)$ will be recursive

Code Generation for Constants

- The code to evaluate an integer constant simply copies it into the accumulator:
 $$cgen(int) = li \, a0 \, int$$
- Note that this also preserves the stack, as required

Code Generation for Addition

$cgen(e_1 + e_2) =$

$cgen(e_1)$; $a0 \leftarrow$ value of e_1

$sw \, a0 \, 0($sp$)$; push that value

$addiu \, sp \, sp -4$; onto the stack

$cgen(e_2)$; $a0 \leftarrow$ value of e_2

$lw \, t1 \, 4(sp)$; grab value of e_1

$add \, a0 \, t1 \, a0$; do the addition

$addiu \, sp \, sp 4$; pop the stack

Possible optimization:
- Put the result of e_1 directly in register $t1$?

Code Generation for Addition: Wrong Attempt!

Optimization: Put the result of e_1 directly in $t1$?

$cgen(e_1 + e_2) =$

$cgen(e_1)$; $a0 \leftarrow$ value of e_1

$move \, t1 \, a0$; save that value in $t1$

$cgen(e_2)$; $a0 \leftarrow$ value of e_2

$add \, a0 \, t1 \, a0$; perform the addition

Try to generate code for: $3 + (7 + 5)$
Code Generation Notes

- The code for $e_1 + e_2$ is a template with "holes" for code for evaluating e_1 and e_2
- Stack machine code generation is recursive
- Code for $e_1 + e_2$ consists of code for e_1 and e_2 glued together
- Code generation can be written as a recursive-descent of the AST
 - At least for (arithmetic) expressions

Code Generation for Subtraction and Constants

New instruction: `sub reg_1 reg_2 reg_3`
Implements $\text{reg}_1 \leftarrow \text{reg}_2 - \text{reg}_3$

\[
\text{cgen}(e_1 - e_2) = \\
\text{cgen}(e_1) ; \quad \text{$a0 \leftarrow$ value of e_1}
\sw \text{$a0} \quad 0(\sp) ; \quad \text{push that value}
\addiu \sp \sp -4 ; \quad \text{onto the stack}
\text{cgen}(e_2) ; \quad \text{$a0 \leftarrow$ value of e_2}
\lw \text{$t1} \quad 4(\sp) ; \quad \text{grab value of e_1}
\sub \text{$a0} \quad \text{$t1} \quad \text{$a0} ; \quad \text{do the subtraction}
\addiu \sp \sp 4 ; \quad \text{pop the stack}
\]

Code Generation for Conditional

- We need flow control instructions
- New MIPS instruction: `beq reg_1 reg_2 label`
 - Branch to `label` if $\text{reg}_1 = \text{reg}_2$
- New MIPS instruction: `j label`
 - Unconditional jump to `label`

Code Generation for If (Cont.)

\[
\text{cgen}(\text{if } e_1 \text{ = } e_2 \text{ then } e_3 \text{ else } e_4) = \\
\text{cgen}(e_1) \quad \text{sw $a0 } 0($sp) \quad \text{addiu $sp $sp -4}$
\text{cgen}(e_2) ; \quad \text{onto the stack}
\lw \text{$t1} \quad 4(\sp) ; \quad \text{grab value of e_1}
\sub \text{$a0} \quad \text{$t1} \quad \text{$a0} ; \quad \text{do the subtraction}
\addiu \sp \sp 4 ; \quad \text{pop the stack}
\]

\[
\text{false_branch:} \\
\quad \text{cgen}(e_4) \\
\text{end_if:} \\
\]

\[
\text{true_branch:} \\
\quad \text{cgen}(e_3) \\
\text{end_if:}
\]
Meet The Activation Record

- Code for function calls and function definitions depends on the layout of the activation record (or “AR”)
- A very simple AR suffices for this language:
 - The result is always in the accumulator
 - No need to store the result in the AR
 - The activation record holds actual parameters
 - For $f(x_1,\ldots,x_n)$ push the arguments x_n,\ldots,x_1 onto the stack
 - These are the only variables in this language

Meet The Activation Record (Cont.)

- The stack discipline guarantees that on function exit, sp is the same as it was before the args got pushed (i.e., before function call)
- We need the return address
- It’s also handy to have a pointer to the current activation
 - This pointer lives in register fp (frame pointer)
 - Reason for frame pointer will be clear shortly (at least I hope!)

Layout of the Activation Record

Summary: For this language, an AR with the caller’s frame pointer, the actual parameters, and the return address suffices

Picture: Consider a call to $f(x,y)$, the AR will be:

```
<table>
<thead>
<tr>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>old FP</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>x</td>
</tr>
</tbody>
</table>
```

AR of f

SP

Code Generation for Function Call

- The calling sequence is the sequence of instructions (of both *caller* and *callee*) to set up a function invocation
- New instruction: `jal label`
 - Jump to *label*, save address of next instruction in special register ra
 - On other architectures the return address is stored on the stack by the “call” instruction
Code Generation for Function Call (Cont.)

cgen(f(e_1, ..., e_n)) =
sw $fp 0($sp)
addiu $sp $sp -4
cgen(e_n)
sw $a0 0($sp)
addiu $sp $sp -4
... cgen(e_1)
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

- The caller saves the value of the frame pointer
- Then it pushes the actual parameters in reverse order
- The caller's jal puts the return address in register $ra
- The AR so far is 4*n+4 bytes long

Code Generation for Function Definition

- New MIPS instruction: jr reg
 - Jump to address in register reg

cgen(f(x_1, ..., x_n) begin e end) =
f_entry:
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp frame_size
lw $fp 0($sp)
jr $ra

- Note: The frame pointer points to the top, not bottom of the frame
- Callee saves old return address, evaluates its body, pops the return address, pops the arguments, and then restores $fp
- frame_size = 4*n + 8

Calling Sequence: Example for f(x, y)

Before call	On entry	After body	After call
FP_1 | FP_1 | FP_1 | FP_1
SP | SP | SP | SP
FP_1 | FP_1 | FP_1 | FP_1
y | y | y | y
x | x | x | x
SP | SP | SP | SP
FP_2 | RA | RA | RA

Code Generation for Variables/Parameters

- Variable references are the last construct
- The "variables" of a function are just its parameters
 - They are all in the AR
 - Pushed by the caller

- Problem: Because the stack grows when intermediate results are saved, the variables are not at a fixed offset from $sp
Code Generation for Variables/Parameters

- Solution: use the frame pointer!
 - Always points to the return address on the stack
 - Since it does not move, it can be used to find the variables
- Let \(x_i \) be the \(i \)th \((i = 1, ..., n)\) formal parameter of the function for which code is being generated

\[
cgen(x_i) = lw \: a0 \: offset(fp) \quad (\text{offset} = 4*i)
\]

Example: For a function \(f(x,y) \) begin e end the activation and frame pointer are set up as follows (when evaluating \(e \)):

\[
\begin{array}{c|c}
\text{old FP} & \text{RA} \\
\hline
\text{y} & \text{x} \\
\hline
\text{FP} & \text{SP} \\
\end{array}
\]

\(\text{x} \) is at \(fp + 4 \)
\(\text{y} \) is at \(fp + 8 \)

Activation Record & Code Generation Summary

- The activation record must be designed together with the code generator
- Code generation can be done by recursive traversal of the AST

Discussion

- Production compilers do different things
 - Emphasis is on keeping values (esp. current stack frame) in registers
 - Intermediate results are laid out in the AR, not pushed and popped from the stack
 - As a result, code generation is often performed in synergy with register allocation

Next time: code generation for temporaries and a deeper look into parameter passing mechanisms