Intermediate Code & Local Optimizations

Lecture Outline

- What is “Intermediate code”?
- Why do we need it?
- How to generate it?
- How to use it?
- Optimizations
 - Local optimizations

Code Generation Summary

- We have so far discussed
 - Runtime organization
 - Simple stack machine code generation
 - Improvements to stack machine code generation
- Our compiler goes directly from the abstract syntax tree (AST) to assembly language...
 - ... and does not perform optimizations

Most real compilers use intermediate languages

Why Intermediate Languages?

ISSUE: Reduce code complexity

- Multiple front-ends
 - gcc can handle C, C++, Java, Fortran, Ada, ...
 - each front-end translates source to the same generic language (called GENERIC)
- Multiple back-ends
 - gcc can generate machine code for various target architectures: x86, x86_64, SPARC, ARM, ...

- **One Icode to bridge them!**
 - Do most optimization on intermediate representation before emitting machine code
Why Intermediate Languages?

ISSUE: When to perform optimizations

- On abstract syntax trees
 - **Pro:** Machine independent
 - **Con:** Too high level
- On assembly language
 - **Pro:** Exposes most optimization opportunities
 - **Con:** Machine dependent
 - **Con:** Must re-implement optimizations when re-targeting
- On an intermediate language
 - **Pro:** Exposes optimization opportunities
 - **Pro:** Machine independent

Kinds of Intermediate Languages

High-level intermediate representations:
- closer to the source language (structs, arrays)
- easy to generate from the input program
- code optimizations may not be straightforward

Low-level intermediate representations:
- closer to target machine: GCC’s RTL, 3-address code
- easy to generate code from
- generation from input program may require effort

“Mid”-level intermediate representations:
- programming language and target independent
- Java bytecode, Microsoft CIL, LLVM IR, ...

Intermediate Code Languages: Design Issues

- Designing a good ICode language is not trivial
- The set of operators in ICode must be rich enough to allow the implementation of source language operations
- ICode operations that are closely tied to a particular machine or architecture, make retargeting harder
- A small set of operations
 - may lead to long instruction sequences for some source language constructs,
 - but on the other hand makes retargeting easier

Intermediate Languages

- Each compiler uses its own intermediate language
- Nowadays, usually an intermediate language is a high-level assembly language
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., `push` translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Architecture of gcc

Three-Address Intermediate Code

- Each instruction is of the form
 \[x := y \text{ op } z \]
 - \(y \) and \(z \) can only be registers or constants
 - Just like assembly
- Common form of intermediate code
- The expression \(x + y \times z \) gets translated as
 \[
 \begin{align*}
 t_1 &:= y \times z \\
 t_2 &:= x + t_1
 \end{align*}
 \]
 - temporary names are made up for internal nodes
 - each sub-expression has a “home”

Generating Intermediate Code

- Similar to assembly code generation
- Major difference
 - Use any number of IL registers to hold intermediate results
Example:
\[
\begin{align*}
 t_1 &:= x + 2 \\
 t_2 &:= y - 1 \\
 t_3 &:= 3 \times t_2 \\
 t_4 &:= t_3 + 42 \\
 \text{if } t_1 \leq t_4 \text{ goto L} \\
 z &:= 0 \\
\end{align*}
\]
L:

Generating Intermediate Code (Cont.)

\(\text{igen}(e, t) \) : a function that generates code to compute the value of \(e \) in register \(t \)

- Example:
 \[
 \begin{align*}
 \text{igen}(e_1 + e_2, t) &= \text{igen}(e_1, t_1) \quad (t_1 \text{ is a fresh register}) \\
 &\quad \text{igen}(e_2, t_2) \quad (t_2 \text{ is a fresh register}) \\
 &\quad t := t_1 + t_2
 \end{align*}
 \]
- Unlimited number of registers
 \[\Rightarrow \text{simple code generation} \]
From ICode to Machine Code

This is almost a macro expansion process

<table>
<thead>
<tr>
<th>ICode</th>
<th>MIPS assembly code</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := A[i]</td>
<td>load i into r1</td>
</tr>
<tr>
<td></td>
<td>la r2, A</td>
</tr>
<tr>
<td></td>
<td>add r2,r2,r1</td>
</tr>
<tr>
<td></td>
<td>lw r2,(r2)</td>
</tr>
<tr>
<td></td>
<td>sw r2,x</td>
</tr>
<tr>
<td>x := y + z</td>
<td>load y into r1</td>
</tr>
<tr>
<td></td>
<td>load z into r2</td>
</tr>
<tr>
<td></td>
<td>add r3,r1,r2</td>
</tr>
<tr>
<td></td>
<td>sw r3,x</td>
</tr>
<tr>
<td>if x >= y goto L</td>
<td>load x into r1</td>
</tr>
<tr>
<td></td>
<td>load y into r2</td>
</tr>
<tr>
<td></td>
<td>bge r1,r2,L</td>
</tr>
</tbody>
</table>

Basic Blocks

- A basic block is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

 Idea:
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - Each instruction in a basic block is executed after all the preceding instructions have been executed

Basic Block Example

Consider the basic block

L: (1)
 t := 2 * x (2)
 w := t + x (3)
 if w > 0 goto L’ (4)

 No way for (3) to be executed without (2) having been executed right before
 - We can change (3) to w := 3 * x
 - Can we eliminate (2) as well?

Identifying Basic Blocks

- Determine the set of leaders, i.e., the first instruction of each basic block:
 - The first instruction of a function is a leader
 - Any instruction that is a target of a branch is a leader
 - Any instruction immediately following a (conditional or unconditional) branch is a leader

 For each leader, its basic block consists of itself and all instructions up to, but not including, the next leader (or end of function)
Control-Flow Graphs

A control-flow graph is a directed graph with
- Basic blocks as nodes
- An edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is `goto L_0`
 - E.g., the execution can fall-through from block A to block B

Frequently abbreviated as CFGs

Control-Flow Graphs: Example

- The body of a function (or method or procedure) can be represented as a control-flow graph

 - There is one initial node

 - All “return” nodes are terminal

Constructing the Control Flow Graph

- First identify the basic blocks of the function
- There is a directed edge between block B_1 to block B_2 if
 - there is a (conditional or unconditional) jump from the last instruction of B_1 to the first instruction of B_2 or
 - B_2 immediately follows B_1 in the textual order of the program, and B_1 does not end in an unconditional jump.

Optimization Overview

- Compiler “optimizations” seek to improve a program’s utilization of some resource
 - Execution time (most often)
 - Code size
 - Network messages sent
 - (Battery) power used, etc.

- Optimization should not alter what the program computes
 - The return value must be the same.
 - Any observable behavior must be the same.
 (This typically also includes termination behavior.)
A Classification of Optimizations

For languages like C, there are three granularities of optimizations

1. Local optimizations
 - Apply to a basic block in isolation
2. Global optimizations
 - Apply to a control-flow graph (function body) in isolation
3. Inter-procedural optimizations
 - Apply across function/procedure boundaries

Most compilers do (1), many do (2), and very few do (3).

Note: there are also link-time optimizations

Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimizations
- Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in terms of compilation time
 - Some optimizations are hard to get completely right
 - The fancy optimizations are often hard, costly, and difficult to get completely correct
- Goal: maximum improvement with minimum cost

Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
- Example: algebraic simplification

Algebraic Simplification

- Some statements can be deleted
 - $x := x + 0$
 - $x := x * 1$
- Some statements can be simplified
 - $x := x * 0 \Rightarrow x := 0$
 - $y := y ** 2 \Rightarrow y := y * y$
 - $x := x * 8 \Rightarrow x := x << 3$
 - $x := x * 15 \Rightarrow t := x << 4; x := t - x$
 (on some machines $<<$ is faster than $*$; but not on all!)
Constant Folding

- Operations on constants can be computed at compile time.
- In general, if there is a statement \(x := y \text{ op } z \)
 - where \(y \) and \(z \) are constants
 - then \(y \text{ op } z \) can be computed at compile time
- Example: \(x := 20 + 22 \Rightarrow x := 42 \)
- Example: if \(42 < 17 \) goto \(L \) can be deleted

Flow of Control Optimizations

- Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or "fall through" from a conditional
 - Such basic blocks can be eliminated
- Why/how would such basic blocks occur?
- Removing unreachable code makes the program smaller
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)

Single Assignment Form

- Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment.
- Basic blocks of intermediate code can be rewritten to be in *single assignment* form
 - \(x := z + y \)
 - \(b := z + y \)
 - \(a := x \Rightarrow a := b \)
 - \(x := 2 * x \Rightarrow x := 2 * b \)
 (\(b \) is a fresh temporary)
- More complicated in general, due to control flow (e.g., loops)
 - *Static single assignment (SSA) form*

Common Subexpression Elimination

- Assume
 - A basic block is in single assignment form
 - A definition \(x := \) is the first use of \(x \) in a block
- All assignments with same RHS compute the same value
- Example:
 - \(x := y * z \quad \Rightarrow \quad x := y * z \)
 (due to the block being in single assignment form, the values of \(x, y \) and \(z \) do not change in the ... code)
Copy Propagation

- If $w := x$ appears in a block, all subsequent uses of w can be replaced with uses of x

- Example:

 $b := z + y$
 $a := b$
 $x := 2 \times a$

- This does not make the program smaller or faster but might enable other optimizations
 - Constant folding
 - Dead code elimination

Constant Propagation and Constant Folding

- Example:

 $a := 5$
 $x := 2 \times a$
 $y := x + 6$
 $t := x \times y$

Dead Code Elimination

If

- $w := \text{RHS}$ appears in a basic block
- w does not appear anywhere else in the program

Then

- the statement $w := \text{RHS}$ is dead and can be eliminated
 - Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)

$x := z + y$
$a := x$
$b := 2 \times a$

Applying Local Optimizations

- Each local optimization does very little by itself

- Typically optimizations interact
 - Performing one optimization enables another

- Optimizing compilers repeatedly perform optimizations until no improvement is possible
 - The optimizer can also be stopped at any time to limit the compilation time
An Example

Initial code:
\[
\begin{align*}
a &:= x \times 2 \\
b &:= 3 \\
c &:= x \\
d &:= c \times c \\
e &:= b \times 2 \\
f &:= a + d \\
g &:= e \times f \\
\end{align*}
\]

assume that only \(f \) and \(g \) are used in the rest of program

An Example

Algebraic simplification:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= c \times c \\
e &:= b \times 1 \\
f &:= a + d \\
g &:= e \times f \\
\end{align*}
\]

An Example

Copy and constant propagation:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= c \times c \\
e &:= b \times 1 \\
f &:= a + d \\
g &:= e \times f \\
\end{align*}
\]
An Example

Copy and constant propagation:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 3 \ll 1 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]

An Example

Constant folding:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 3 \ll 1 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]

An Example

Constant folding:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]

An Example

Common subexpression elimination:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= x \times x \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f
\end{align*}
\]
Common subexpression elimination:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= a \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f \\
\end{align*}
\]

Copy and constant propagation:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= a \\
e &:= 6 \\
f &:= a + d \\
g &:= e \times f \\
\end{align*}
\]

Dead code elimination:
\[
\begin{align*}
a &:= x \times x \\
b &:= 3 \\
c &:= x \\
d &:= a \\
e &:= 6 \\
f &:= a + a \\
g &:= 6 \times f \\
\end{align*}
\]
An Example

Dead code elimination:

\[
\begin{align*}
 a &:= x \times x \\
 f &:= a + a \\
 g &:= 6 \times f
\end{align*}
\]

This is the final form

Peephole Optimizations on Assembly Code

- The optimizations presented before work on intermediate code
 - They are target independent
 - But they can be applied on assembly language also

Peephole optimization is an effective technique for improving assembly code
- The “peephole” is a short sequence of (usually contiguous) instructions
- The optimizer replaces the sequence with another equivalent (but faster) one

Implementing Peephole Optimizations

- Write peephole optimizations as replacement rules
 \[
 i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m
 \]
 where the RHS is the improved version of the LHS
- Example:
 move a b, move b a \rightarrow move a b
 - Works if move b a is not the target of a jump
- Another example:
 addiu a a i, addiu a a j \rightarrow addiu a a i+$j

Peephole Optimizations

- Redundant instruction elimination, e.g.:
 \[
 \begin{array}{c}
 \ldots \\
 \text{goto } L \\
 L: \ldots \\
 \end{array}
 \Rightarrow
 \begin{array}{c}
 \ldots \\
 L: \ldots \\
 \end{array}
 \]
- Flow of control optimizations, e.g.:
 \[
 \begin{array}{c}
 \ldots \\
 \text{goto } L1 \\
 L1: \text{goto } L2 \\
 \ldots \\
 \end{array}
 \Rightarrow
 \begin{array}{c}
 \ldots \\
 \text{goto } L2 \\
 L1: \text{goto } L2 \\
 \ldots \\
 \end{array}
 \]
Peephole Optimizations (Cont.)

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: `addiu $a $b 0 → move $a $b`
 - Example: `move $a $a →`
 - These two together eliminate `addiu $a $a 0`

- Just like for local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect

Concluding Remarks

- Multiple front-ends, multiple back-ends via intermediate codes

- Intermediate code is the right representation for many optimizations

- Many simple optimizations can still be applied on assembly language

- Next time: global optimizations