Global Optimization

Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

\[
x := 42 \\
y := z * w \\
q := y + x
\]

\[
x := 42 \\
y := z * w \\
q := y + 42
\]

Global Optimization

These optimizations can be extended to an entire control-flow graph
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
x := 42 \\
b > 0 \\
y := z * w \\
y := 0 \\
q := y + x
\]

Correctness

• How do we know whether it is OK to globally propagate constants?
• There are situations where it is incorrect:

\[
x := 42 \\
b > 0 \\
y := z * w \\
x := 54 \\
y := 0 \\
q := y + x
\]

Correctness (Cont.)

To replace a use of \(x \) by a constant \(k \) we must know that the following property ** holds:

** On every path to the use of \(x \), the last assignment to \(x \) is \(x := k \) **
Example 1 Revisited

x := 42
b > 0
y := z * w
q := y + x

y := 0

Example 2 Revisited

x := 42
b > 0
y := z * w
x := 54
q := y + x

Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires global analysis
 - An analysis that determines how data flows over the entire control-flow graph of a function/method

Global Analysis

Global optimization tasks share several traits:
 - The optimization depends on knowing a property P at a particular point in program execution
 - Proving P at any point requires knowledge of the entire function body
 - Property P is typically undecidable!
 - It is OK to be conservative: If the optimization requires P to be true, then want to know either
 • that P is definitely true, or
 • that we don’t know whether P is true
 - It is always safe to say “don’t know”
 • We try to say do not know as rarely as possible
Global Analysis (Cont.)

- *Global dataflow analysis* is a standard technique for solving problems with these characteristics.

- Global constant propagation is one example of an optimization that requires global dataflow analysis.

Global Constant Propagation

- On every path to the use of x, the last assignment to x is $x := k$ **

- Global constant propagation can be performed at any point where property ** holds.

- Consider the case of computing ** for a single variable x at all program points.

Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with x at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>c</td>
<td>$x = \text{constant } c$</td>
</tr>
<tr>
<td>*</td>
<td>Don’t know whether x is a constant</td>
</tr>
</tbody>
</table>

Example

```
x := *  x = *  x = 42
x = 42  x = 42  x = 42
b > 0   x := 42
y := z * w  y := 0
x := 54  q := y + x
x := 54  x := 54
```
Using the Information

- Given global constant information, it is easy to perform the optimization
 - Simply inspect the $x = ?$ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant

- But how do we compute the properties $x = ?$

The Analysis Idea

The analysis of a (complicated) program can be expressed as a combination of simple rules relating the change in information between adjacent statements

Explanation

- The idea is to “push” or “transfer” information from one statement to the next

- For each statement s, we compute information about the value of x immediately before and after s
 \[
 C_{\text{in}}(x,s) = \text{value of } x \text{ before } s \\
 C_{\text{out}}(x,s) = \text{value of } x \text{ after } s
 \]

Transfer Functions

- Define a transfer function that transfers information from one statement to another

- In the following rules, let statement s have as immediate predecessors statements p_1,\ldots,p_n
Rule 1

if $C_{out}(x, p_i) = *$ for any i, then $C_{in}(x, s) = *$

Rule 2

If $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$
then $C_{in}(x, s) = *$

Rule 3

if $C_{out}(x, p_i) = c$ or # for all i,
then $C_{in}(x, s) = c$

Rule 4

if $C_{out}(x, p_i) =#$ for all i,
then $C_{in}(x, s) =#$
The Other Half

- Rules 1-4 relate the *out* of one statement to the *in* of the successor statement
 - they propagate information forward across CFG edges

- We also need rules relating the *in* of a statement to the *out* of the same statement
 - to propagate information across statements

Rule 5

\[C_{\text{out}}(x, s) = \# \text{ if } C_{\text{in}}(x, s) = \# \]

Rule 6

\[C_{\text{out}}(x, x := c) = c \text{ if } c \text{ is a constant} \]

Rule 7

where \(f \) is a function other than the one being analyzed

\[C_{\text{out}}(x, x := f(...)) = * \]

This rule says that we do not perform inter-procedural analysis (i.e., we do not look at what other functions do)
Rule 8

\[C_{\text{out}}(x, y := \ldots) = C_{\text{in}}(x, y := \ldots) \text{ if } x \neq y \]

An Algorithm

1. For every entry \(s \) to the function, set \(C_{\text{in}}(x, s) = * \)
2. Set \(C_{\text{in}}(x, s) = C_{\text{out}}(x, s) = # \) everywhere else
3. Repeat until all points satisfy 1-8:
 - pick an \(s \) not satisfying 1-8 and
 - update using the appropriate rule

The Value #

To understand why we need #, look at a loop

Discussion

- Consider the statement \(y := 0 \)
- To compute whether \(x \) is constant at this point, we need to know whether \(x \) is constant at the two predecessors
 - \(x := 42 \)
 - \(q := y + x \)
- But information for \(q := y + x \) depends on its predecessors, including \(y := 0 \)!
The Value # (Cont.)

- Because of cycles, all points must have values at all times

- Intuitively, assigning some initial value allows the analysis to break cycles

- The initial value # means “So far as we know, control never reaches this point”
Example

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := x + y \]
\[q < b \]
\[x = * \]
\[x = 42 \]

Orderings

- We can simplify the presentation of the analysis by ordering the values \(# < c < *\)

- Drawing a picture with “lower” values drawn lower, we get

![Diagram](image)

Orderings (Cont.)

- * is the greatest value, # is the least
 - All constants are in between and incomparable

- Let \(\text{lub} \) be the least-upper bound in this ordering

- Rules 1-4 can be written using \(\text{lub} \):
 \[C_{in}(x, s) = \text{lub} \{ C_{out}(x, p) \mid p \text{ is a predecessor of } s \} \]

Termination

- Simply saying “repeat until nothing changes” does not guarantee that eventually we reach a point where nothing changes

- The use of \(\text{lub} \) explains why the algorithm terminates
 - Values start as \# and only increase
 - \# can change to a constant, and a constant to *
 - Thus, \(C_{in}(x, s) \) can change at most twice
Termination (Cont.)

Thus, the algorithm is linear in program size

Number of steps = // worst case
Number of $C_{(\ldots)}$ values computed * 2 =
Number of program statements * 4

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $x := 42$ is dead
(assuming x is not used elsewhere)

Live and Dead Variables

- The first value of x is dead (never used)
- The second value of x is live (may be used)
- Liveness is an important concept for the compiler

Liveness

A variable x is live at statement s if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x
Global Dead Code Elimination

- A statement $x := \ldots$ is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

Liveness Rule 1

\[
L_{\text{out}}(x, p) = \bigvee \{ L_{\text{in}}(x, s) \mid s \text{ a successor of } p \}
\]

Liveness Rule 2

\[
L_{\text{in}}(x, s) = \text{true} \text{ if } s \text{ refers to } x \text{ on the RHS}
\]
Liveness Rule 3

\[L_{in}(x, x := e) = \text{false} \text{ if } e \text{ does not refer to } x \]

Liveness Rule 4

\[L_{in}(x, s) = L_{out}(x, s) \text{ if } s \text{ does not refer to } x \]

Algorithm

1. Let all \(L_{(\ldots)} = \text{false} \) initially

2. Repeat until all statements \(s \) satisfy rules 1-4
 - pick an \(s \) where one of 1-4 does not hold and
 - update using the appropriate rule

Termination

- A value can change from \text{false} to \text{true}, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis information is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We have seen two kinds of analysis:

• An analysis that enables constant propagation:
 - this is a forward analysis: information is pushed from inputs to outputs

• An analysis that calculates variable liveness:
 - this is a backwards analysis: information is pushed from outputs back towards inputs

Global Flow Analyses

• There are many other global flow analyses

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules relating information between adjacent program points