Introduction to Lexical Analysis
Outline

• Informal sketch of lexical analysis
 – Identifies tokens in input string

• Issues in lexical analysis
 – Lookahead
 – Ambiguities

• Specifying lexical analyzers (lexers)
 – Regular expressions
 – Examples of regular expressions
Lexical Analysis

• What do we want to do? Example:

  ```
  if (i == j)
  then
      z = 0;
  else
      z = 1;
  ```

• The input is just a string of characters:

  ```
  if (i == j)\n  then\n      tz = 0;\n  else\n      tz = 1;
  ```

• **Goal:** Partition input string into substrings
 - where the substrings are tokens
 - and classify them according to their role
What’s a Token?

- A syntactic category
 - In a natural language:
 noun, verb, adjective, ...
 - In a programming language:
 Identifier, Integer, Keyword, Whitespace, ...
Tokens

- Tokens correspond to sets of strings
 - these sets depend on the programming language

- **Identifier**: strings of letters or digits, starting with a letter
- **Integer**: a non-empty string of digits
- **Keyword**: "else" or "if" or "begin" or ...
- **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
What are Tokens Used for?

• Classify program substrings according to role

• Output of lexical analysis is a stream of tokens...

• ... which is input to the parser

• Parser relies on token distinctions
 - An identifier is treated differently than a keyword
Designing a Lexical Analyzer: Step 1

• Define a finite set of tokens
 - Tokens describe all items of interest
 - Choice of tokens depends on language, design of parser

• Recall

 if (i == j) then
 tz = 0;
 else
 tz = 1;

• Useful tokens for this expression:
 Integer, Keyword, Relation, Identifier, Whitespace,
 (,), =, ;
Designing a Lexical Analyzer: Step 2

• Describe which strings belong to each token

• Recall:
 - **Identifier**: strings of letters or digits, starting with a letter
 - **Integer**: a non-empty string of digits
 - **Keyword**: “else” or “if” or “begin” or …
 - **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
Lexical Analyzer: Implementation

An implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token
 - The lexeme is the substring
Example

• Recall:
 \[
 \text{if} \ (i == j) \ \text{then} \ z = 0; \ \text{else} \ z = 1;
 \]

• Token-lexeme groupings:
 - Identifier: i, j, z
 - Keyword: if, then, else
 - Relation: ==
 - Integer: 0, 1
 - (,), =, ; single character of the same name
Why do Lexical Analysis?

• Simplify parsing
 - The lexer usually discards “uninteresting” tokens that don’t contribute to parsing
 • E.g. Whitespace, Comments
 - Converts data early

• Separate out logic to read source files
 - Potentially an issue on multiple platforms
 - Can optimize reading code independently of parser
True Crimes of Lexical Analysis

• Is it as easy as it sounds?

• Not quite!

• Look at some programming language history . . .
Lexical Analysis in FORTRAN

• FORTRAN rule: Whitespace is insignificant

• E.g., \texttt{VAR1} is the same as \texttt{VA R1}

FORTRAN whitespace rule was motivated by inaccuracy of punch card operators
A terrible design! Example

• Consider
 – DO 5 I = 1,25
 – DO 5 I = 1.25

• The first is DO 5 I = 1, 25
• The second is DO 5I = 1.25

• Reading left-to-right, the lexical analyzer cannot tell if DO 5I is a variable or a DO statement until after “,” is reached
Lexical Analysis in FORTRAN. Lookahead.

Two important points:

1. The goal is to partition the string
 - This is implemented by reading left-to-right, recognizing one token at a time

2. "Lookahead" may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues

 i vs. if
 = vs. ==
Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

\[
\text{IF THEN THEN THEN = ELSE;} \quad \text{ELSE ELSE ELSE = IF}
\]

can be difficult to determine how to label lexemes
More Modern True Crimes in Scanning

Nested template declarations in C++

\[
\text{vector<vector<int>> myVector}
\]

\[
\text{vector < vector < int >> myVector}
\]

\[
(\text{vector < (vector < (int >> myVector))})
\]
The goal of lexical analysis is to
- Partition the input string into *lexemes* (the smallest program units that are individually meaningful)
- Identify the token of each lexeme

Left-to-right scan \Rightarrow lookahead sometimes required
Next

• We still need
 - A way to describe the lexemes of each token

 - A way to resolve ambiguities
 • Is \texttt{if} two variables \texttt{i} and \texttt{f}?
 • Is \texttt{==} two equal signs \texttt{=} \texttt{=}?
Regular Languages

• There are several formalisms for specifying tokens

• *Regular languages* are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A language Λ over Σ is a set of strings of characters drawn from Σ

(Σ is called the alphabet of Λ)
Examples of Languages

• Alphabet = English characters
• Language = English sentences
• Not every string on English characters is an English sentence

• Alphabet = ASCII
• Language = C programs
• Note: ASCII character set is different from English character set
Notation

• Languages are sets of strings

• Need some notation for specifying which sets of strings we want our language to contain

• The standard notation for regular languages is regular expressions
Atomic Regular Expressions

• Single character

\['c' = \{ "c" \} \]

• Epsilon

\[\varepsilon = \{ \"\" \} \]
Compound Regular Expressions

• Union

\[A+ B = \{ s \mid s \in A \text{ or } s \in B \} \]

• Concatenation

\[AB = \{ ab \mid a \in A \text{ and } b \in B \} \]

• Iteration

\[A^* = \bigcup_{i \geq 0} A^i \quad \text{where} \quad A^i = A \ldots \text{i times} \ldots A \]
Regular Expressions

• Def. The regular expressions over Σ are the smallest set of expressions including

ε

'c' where $c \in \Sigma$

$A + B$ where A, B are rexp over Σ

AB """"

A^* where A is a rexp over Σ
Syntax vs. Semantics

To be careful, we should distinguish syntax and semantics (meaning) of regular expressions.

\[
\begin{align*}
L(\varepsilon) & = \{"\"\} \\
L('c') & = \{"c"\} \\
L(A+B) & = L(A) \cup L(B) \\
L(AB) & = \{ab \mid a \in L(A) \text{ and } b \in L(B)\} \\
L(A^*) & = \bigcup_{i \geq 0} L(A^i) \\
\end{align*}
\]
Example: Keyword

Keyword: "else" or "if" or "begin" or ...

'else' + 'if' + 'begin' + ...

Note: 'else' abbreviates 'e"l"s"e'
Example: Integers

Integer: a non-empty string of digits

digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
integer = digit digit*

Abbreviation: $A^+ = AA^*$
Example: Identifier

Identifier: *strings of letters or digits, starting with a letter*

letter = 'A' +...+'Z'+ 'a' +...+'z'

identifier = letter (letter + digit)*

Is (letter* + digit*) the same?
Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

\((' ' + '\n' + '\t')^+ \)
Example 1: Phone Numbers

- Regular expressions are all around you!
- Consider +46(0)18-471-1056

\[\Sigma = \text{digits} \cup \{+, -, (,)\} \]

\begin{align*}
\text{country} &= \text{digit} \ \text{digit} \\
\text{city} &= \text{digit} \ \text{digit} \\
\text{area} &= \text{digit} \ \text{digit} \ \text{digit} \\
\text{extension} &= \text{digit} \ \text{digit} \ \text{digit} \ \text{digit} \ \text{digit} \\
\text{phone_num} &= ‘+’\text{country}‘(’0‘)’\text{city}‘–’\text{area}‘–’\text{extension}
\end{align*}
Example 2: Email Addresses

- Consider \textit{kostis@it.uu.se}

\[
\begin{align*}
\Sigma & = \text{letters } \cup \{.,@\} \\
\text{name} & = \text{letter}^+ \\
\text{address} & = \text{name '@' name '.' name '.' name}
\end{align*}
\]
Summary

- Regular expressions describe many useful languages
- Regular languages are a language specification
 - We still need an implementation

- Next: Given a string s and a regular expression R, is $s \in L(R)$?
- A yes/no answer is not enough!
- Instead: partition the input into tokens
- We will adapt regular expressions to this goal
Implementation of Lexical Analysis
Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables
Notation

- For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

- **Union:** $A + B \equiv A \mid B$
- **Option:** $A + \varepsilon \equiv A?$
- **Range:** ‘a’+'b'+...+'z' \equiv [a-z]
- **Excluded range:**

 complement of [a-z] \equiv [^a-z]
Regular Expressions \Rightarrow Lexical Specifications

1. Select a set of tokens
 - Integer, Keyword, Identifier, LeftPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 - Integer = digit+
 - Keyword = ‘if’ + ‘else’ + ...
 - Identifier = letter (letter + digit) *
 - LeftPar = ‘(’
 - ...

3. Construct \(R \), a regular expression matching all lexemes for all tokens

\[
R = \text{Keyword} + \text{Identifier} + \text{Integer} + \ldots
\]
\[
= R_1 + R_2 + R_3 + \ldots
\]

Facts: If \(s \in L(R) \) then \(s \) is a lexeme

- Furthermore \(s \in L(R_j) \) for some “\(j \)”
- This “\(j \)” determines the token that is reported
4. Let input be $x_1...x_n$
 - ($x_1 ... x_n$ are characters in the language alphabet)
 - For $1 \leq i \leq n$ check
 $x_1...x_i \in L(R)$?

5. It must be that
 $x_1...x_i \in L(R_j)$ for some i and j
 (if there is a choice, pick the smallest such j)

6. Report token j, remove $x1...x_i$ from input and
 go to step 4
How to Handle Spaces and Comments?

1. We could create a token `Whitespace`

 \[
 \text{Whitespace} = (\ ' \ + \ \text{\backslash n} + \ '\backslash t')^*\]

 - We could also add comments in there
 - An input " \t\n 555 " is transformed into
 \[
 \text{Whitespace Integer Whitespace}\n \]

2. Lexical analyzer skips spaces (preferred)

 - Modify step 5 from before as follows:
 It must be that \(x_k \ldots x_i \in L(R_j)\) for some \(j\) such that \(x_1 \ldots x_{k-1} \in L(\text{Whitespace})\)

 - Parser is not bothered with spaces
Ambiguities (1)

- There are ambiguities in the algorithm.
- How much input is used?
- What if \(x_1 \ldots x_i \in L(R) \) and also \(x_1 \ldots x_K \in L(R) \)
- The “maximal munch” rule: Pick the longest possible substring that matches \(R \)
Ambiguities (2)

• Which token is used?
• What if
 \[x_1 \ldots x_i \in L(R_j) \text{ and also } x_1 \ldots x_i \in L(R_k) \]
• Rule: use rule listed first (j if j < k)

• Example:
 - \(R_1 = \text{Keyword} \) and \(R_2 = \text{Identifier} \)
 - “if” matches both
 - Treats “if” as a keyword not an identifier
Error Handling

• What if
 No rule matches a prefix of input?
• Problem: Can’t just get stuck …
• Solution:
 – Write a rule matching all “bad” strings
 – Put it last

• Lexical analysis tools allow the writing of:
 \[R = R_1 + \ldots + R_n + \text{Error} \]
 – Token \text{Error} matches if nothing else matches
Summary

- Regular expressions provide a concise notation for string patterns
- **Use in lexical analysis requires small extensions**
 - To resolve ambiguities
 - To handle errors
- **Good algorithms known (next)**
 - Require only single pass over the input
 - Few operations per character (table lookup)
Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

• Regular expressions for specification
• Finite automata for implementation (automatic generation of lexical analyzers)
Finite Automata

A finite automaton is a recognizer for the strings of a regular language

A finite automaton consists of
- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
- A set of transitions $\text{state } \rightarrow \text{input state}$
Finite Automata

- Transition
 \[s_1 \rightarrow^a s_2 \]
- Is read
 In state \(s_1 \) on input “a” go to state \(s_2 \)
- If end of input
 - If in accepting state \(\Rightarrow \) accept
- Otherwise
 - If no transition is possible \(\Rightarrow \) reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

- A finite automaton that accepts only “1”

- A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0,1\}
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?
And Another Example

- Alphabet still \{ 0, 1 \}

- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input
Deterministic and Non-Deterministic Automata

- **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves

- **Non-deterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

- Finite automata have finite memory
 - Enough to only encode the current state
Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make \(\varepsilon\)-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

- An NFA can get into multiple states

- Input: 1 0 1

- Rule: NFA accepts an input if it can get in a final state
NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of languages (regular languages)

• DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

NFA

DFA

- DFA can be exponentially larger than NFA (contrary to what is shown in the above example)
Regular Expressions to Finite Automata

- High-level sketch

Diagram:

- NFA
 - Regular expressions
 - Lexical Specification
- DFA
 - Table-driven Implementation of DFA
Regular Expressions to NFA (1)

• For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression \(M \)

 ![Diagram](image)

 i.e. our automata have one start and one accepting state

• For \(\varepsilon \)

 ![Diagram](image)

• For input \(a \)

 ![Diagram](image)
Regular Expressions to NFA (2)

- For AB

- For $A + B$
Regular Expressions to NFA (3)

• For A^*
Example of Regular Expression → NFA conversion

- Consider the regular expression
 \[(1+0)^*1\]
- The NFA is

![NFA Diagram]

- States:
 - A: Start state
 - B
 - C
 - D
 - E
 - F
 - G: Accept state
 - H
 - I
 - J: End state

- Transitions:
 - \(\epsilon\) transitions:
 - \(A \rightarrow B\)
 - \(C \rightarrow D\)
 - \(E \rightarrow F\)
 - \(G \rightarrow H\)
 - \(H \rightarrow I\)
 - \(1\) transitions:
 - \(B \rightarrow C\)
 - \(C \rightarrow E\)
 - \(E \rightarrow G\)
 - \(I \rightarrow J\)
 - \(0\) transition:
 - \(D \rightarrow C\)
NFA to DFA. The Trick

• Simulate the NFA

• Each state of DFA
 = a non-empty subset of states of the NFA

• Start state
 = the set of NFA states reachable through ε-moves from NFA start state

• Add a transition $S \xrightarrow{a} S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 • considering ε-moves as well
NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some subset of those N states

• How many subsets are there?
 - \(2^N - 1\) = finitely many
NFA to DFA Example
Implementation

• A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

• DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as lex, ML-Lex, flex or jlex

- But, DFAs can be huge

- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
Theory vs. Practice

Two differences:

• DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.

• DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.