Abstract Syntax Trees
&
Top-Down Parsing
Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree.
- Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes how $s \in L(G)$.
 - Ambiguity: more than one parse tree (possible interpretation) for some string s.
 - Error: no parse tree for some string s.
 - How do we construct the parse tree?
Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST
Abstract Syntax Trees (Cont.)

- Consider the grammar
 \[E \rightarrow \text{int} \mid (E) \mid E + E \]

- And the string
 \[5 + (2 + 3) \]

- After lexical analysis (a list of tokens)
 \[\text{int}_5 \ '+\ ' (\text{int}_2 \ '+\ \text{int}_3 \ ') \]

- During parsing we build a parse tree ...
Example of Parse Tree

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes
Example of Abstract Syntax Tree

- Also captures the nesting structure
- But abstracts from the concrete syntax
 - more compact and easier to use
- An important data structure in a compiler
Semantic Actions

• This is what we will use to construct ASTs

• Each grammar symbol may have attributes
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer

• Each production may have an action
 - Written as: \[X \rightarrow Y_1 \ldots Y_n \{ \text{action} \} \]
 - That can refer to or compute symbol attributes
Semantic Actions: An Example

• Consider the grammar

\[E \rightarrow \text{int} \mid E + E \mid (E) \]

• For each symbol \(X \) define an attribute \(X.\text{val} \)
 - For terminals, \(\text{val} \) is the associated lexeme
 - For non-terminals, \(\text{val} \) is the expression’s value
 (which is computed from values of subexpressions)

• We annotate the grammar with actions:

\[
E \rightarrow \text{int} \quad \{ \text{E.val} = \text{int.val} \} \\
\mid E_1 + E_2 \quad \{ \text{E.val} = E_1.\text{val} + E_2.\text{val} \} \\
\mid (E_1) \quad \{ \text{E.val} = E_1.\text{val} \}
\]
Semantic Actions: An Example (Cont.)

- **String:** $5 + (2 + 3)$
- **Tokens:** `int5` `+` `(` `int2` `+` `int3` `)`

<table>
<thead>
<tr>
<th>Productions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \rightarrow E_1 + E_2$</td>
<td>$E.val = E_1.val + E_2.val$</td>
</tr>
<tr>
<td>$E_1 \rightarrow int_5$</td>
<td>$E_1.val = int_5.val = 5$</td>
</tr>
<tr>
<td>$E_2 \rightarrow (E_3)$</td>
<td>$E_2.val = E_3.val$</td>
</tr>
<tr>
<td>$E_3 \rightarrow E_4 + E_5$</td>
<td>$E_3.val = E_4.val + E_5.val$</td>
</tr>
<tr>
<td>$E_4 \rightarrow int_2$</td>
<td>$E_4.val = int_2.val = 2$</td>
</tr>
<tr>
<td>$E_5 \rightarrow int_3$</td>
<td>$E_5.val = int_3.val = 3$</td>
</tr>
</tbody>
</table>
Semantic Actions: Dependencies

Semantic actions specify a system of equations
 - Order of executing the actions is not specified

• Example:
 \[E_3.val = E_4.val + E_5.val \]
 - Must compute \(E_4.val \) and \(E_5.val \) before \(E_3.val \)
 - We say that \(E_3.val \) depends on \(E_4.val \) and \(E_5.val \)

• The parser must find the order of evaluation
Each node labeled with a non-terminal E has one slot for its `val` attribute.

Note the dependencies.
Evaluating Attributes

• An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up

• Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal
Semantic Actions: Notes (Cont.)

- **Synthesized** attributes
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order

- Grammars with only synthesized attributes are called **S-attributed** grammars
 - Most frequent kinds of grammars
Inherited Attributes

- Another kind of attributes
- *Calculated from attributes of the parent node(s) and/or siblings in the parse tree*
- Example: a line calculator
A Line Calculator

- Each line contains an expression
 \[E \rightarrow \text{int} \mid E + E \]
- Each line is terminated with the = sign
 \[L \rightarrow E = \mid + E = \]
- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines
 \[P \rightarrow \varepsilon \mid PL \]
Attributes for the Line Calculator

• Each \(E \) has a synthesized attribute \(\text{val} \)
 - Calculated as before
• Each \(L \) has a synthesized attribute \(\text{val} \)
 \[
 L \rightarrow E = \{ \text{L.val} = \text{E.val} \}
 \]
 \[
 \mid + E = \{ \text{L.val} = \text{E.val} + \text{L.prev} \}
 \]
• We need the value of the previous line
• We use an inherited attribute \(\text{L.prev} \)
Attributes for the Line Calculator (Cont.)

• Each P has a synthesized attribute val
 - The value of its last line
 $$P \rightarrow \varepsilon \quad \{ \text{P.val = 0} \}$$
 $$| \quad P_1 L \quad \{ \text{P.val = L.val; } \quad \text{L.prev = P}_1 \text{.val} \}$$

• Each L has an inherited attribute prev
 - $L\text{.prev}$ is inherited from sibling $P_1\text{.val}$

• Example …
Example of Inherited Attributes

- val synthesized
- prev inherited
- All can be computed in depth-first order
Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
 - Also used for type checking, code generation, ...

• Process is called **syntax-directed translation**
 - Substantial generalization over CFGs
Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

\[
\text{mkleaf}(n) = \begin{array}{c}
\text{n} \\
\end{array}
\]

\[
\text{mkplus}(T_1, T_2) = \begin{array}{c}
\text{PLUS} \\
T_1 \\
T_2 \\
\end{array}
\]
Constructing a Parse Tree

- We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int.lexval is the value of the integer lexeme
 - Computed using semantic actions

\[
E \rightarrow \text{int} & \quad \{ E.ast = \text{mkleaf(int.lexval)} \} \\
| E_1 + E_2 & \quad \{ E.ast = \text{mkplus}(E_1.ast, E_2.ast) \} \\
| (E_1) & \quad \{ E.ast = E_1.ast \}
\]
Parse Tree Example

• Consider the string $\text{int}_5 \ '+' \ '(' \ \text{int}_2 \ '+' \ \text{int}_3 \ ')'$

• A bottom-up evaluation of the ast attribute:

$$E.\text{ast} = \text{mkplus} (\text{mkleaf}(5), \ \text{mkplus} (\text{mkleaf}(2), \ \text{mkleaf}(3))$$
Review of Abstract Syntax Trees

- We can specify language syntax using CFG.
- The parser answers whether \(s \in L(G) \)
- ... and builds a parse tree
- ... which it converts to an AST
- ... and passes on to the rest of the compiler.

- In the next “parsing” lectures:
 - How do we answer \(s \in L(G) \) and build a parse tree?
- After that: from AST to assembly language.
Second-Half of Lecture: Outline

• Implementation of parsers
• Two approaches
 - Top-down
 - Bottom-up
• These slides: Top-Down
 - Easier to understand and program manually
• Then: Bottom-Up
 - More powerful and used by most parser generators
Introduction to Top-Down Parsing

• Terminals are seen in order of appearance in the token stream:
 \[t_2 \ t_5 \ t_6 \ t_8 \ t_9 \]

• The parse tree is constructed
 - From the top
 - From left to right
Recursive Descent Parsing: Example

- Consider the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} * T \]
- Token stream is: \[\text{int}_5 * \text{int}_2 \]
- Start with top-level non-terminal \(E \)

- Try the rules for \(E \) in order
Recursive Descent Parsing: Example (Cont.)

• Try $E_0 \rightarrow T_1 + E_2$

 • Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int5

 • Try $T_1 \rightarrow \text{int}$. Token matches.
 - But + after T_1 does not match input token *

 • Try $T_1 \rightarrow \text{int} * T_2$
 - This will match and will consume the two tokens.
 • Try $T_2 \rightarrow \text{int}$ (matches) but + after T_1 will be unmatched
 • Try $T_2 \rightarrow \text{int} * T_3$ but * does not match with end-of-input

• Has exhausted the choices for T_1
 - Backtrack to choice for E_0

Token stream: int5 * int2

$E \rightarrow T + E \mid T$
$T \rightarrow (E) \mid \text{int} \mid \text{int} * T$
Recursive Descent Parsing: Example (Cont.)

• Try $E_0 \rightarrow T_1$

• Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int}_5 \ast T_2$ and $T_2 \rightarrow \text{int}_2$
 - With the following parse tree

```
  E_0
   |
   T_1
    |
   int_5
    *
   T_2
    |
   int_2
```

Token stream: $\text{int}_5 \ast \text{int}_2$

$E \rightarrow T + E \mid T$

$T \rightarrow (E) \mid \text{int} \mid \text{int} \ast T$
Recursive Descent Parsing: Notes

• Easy to implement by hand

• Somewhat inefficient (due to backtracking)

• But does not always work ...
When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S \alpha$

  ```
  bool S_1() { return S() && term(a); } 
  bool S() { return S_1(); } 
  ```

- $S()$ will get into an infinite loop

- A left-recursive grammar has a non-terminal S

 $S \rightarrow^* S\alpha$ for some α

- Recursive descent does not work in such cases
 - It goes into an infinite loop
Elimination of Left Recursion

- Consider the left-recursive grammar
 \[S \rightarrow S \alpha | \beta \]
 - Generates all strings starting with a \(\beta \) and followed by any number of \(\alpha \)'s

- The grammar can be rewritten using right recursion
 \[
 S \rightarrow \beta \ S' \\
 S' \rightarrow \alpha \ S' | \varepsilon
 \]
More Elimination of Left-Recursion

• In general

\[S \rightarrow S \alpha_1 \mid \ldots \mid S \alpha_n \mid \beta_1 \mid \ldots \mid \beta_m \]

• All strings derived from \(S \) start with one of \(\beta_1, \ldots, \beta_m \) and continue with several instances of \(\alpha_1, \ldots, \alpha_n \)

• Rewrite as

\[S \rightarrow \beta_1 S' \mid \ldots \mid \beta_m S' \]
\[S' \rightarrow \alpha_1 S' \mid \ldots \mid \alpha_n S' \mid \varepsilon \]
General Left Recursion

• The grammar
 \[S \rightarrow A \alpha | \delta \]
 \[A \rightarrow S \beta \]
 is also left-recursive because
 \[S \rightarrow^+ S \beta \alpha \]

• This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]
Summary of Recursive Descent

• Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
• Unpopular because of backtracking
 - Thought to be too inefficient

• In practice, backtracking is eliminated by restricting the grammar
Predictive Parsers

• Like recursive-descent but parser can “predict” which production to use
 - By looking at the next few tokens
 - No backtracking

• Predictive parsers accept LL(k) grammars
 - L means “left-to-right” scan of input
 - L means “leftmost derivation”
 - k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used
LL(1) Languages

• In recursive-descent, for each non-terminal and input token there may be a choice of productions
• LL(1) means that for each non-terminal and token there is only one production that could lead to success
• Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production
Predictive Parsing and Left Factoring

• Recall the grammar for arithmetic expressions

\[
E \rightarrow T + E \mid T \\
T \rightarrow (E) \mid \text{int} \mid \text{int} \times T
\]

• Hard to predict because
 - For \(T\) two productions start with \text{int}
 - For \(E\) it is not clear how to predict

• A grammar must be left-factored before it is used for predictive parsing
Left-Factoring Example

• Recall the grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow (E) \mid \text{int} \mid \text{int} \times T \]

• Factor out common prefixes of productions
 \[E \rightarrow T X \]
 \[X \rightarrow + E \mid \varepsilon \]
 \[T \rightarrow (E) \mid \text{int} \ Y \]
 \[Y \rightarrow \ast T \mid \varepsilon \]

• This grammar is equivalent to the original one
LL(1) Parsing Table Example

- **Left-factored grammar**

\[
E \rightarrow T X \\
T \rightarrow (E) \mid \text{int } Y \\
X \rightarrow + E \mid \varepsilon \\
Y \rightarrow * T \mid \varepsilon
\]

- **The LL(1) parsing table ($$ is the end marker):**

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>T X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>+ E</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>int Y</td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>* T</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>
• Consider the \([E, \text{int}]\) entry
 - “When current non-terminal is \(E\) and next input is \(\text{int}\), use production \(E \rightarrow T X\)"
 - This production can generate an \(\text{int}\) in the first place

• Consider the \([Y,+]\) entry
 - “When current non-terminal is \(Y\) and current token is +, get rid of \(Y\)”
 - \(Y\) can be followed by + only in a derivation in which \(Y \rightarrow \varepsilon\)
LL(1) Parsing Tables: Errors

• Blank entries indicate error situations
 - Consider the [E,*] entry
 - “There is no way to derive a string starting with * from non-terminal E”
Using Parsing Tables

• Method similar to recursive descent, except
 - For each non-terminal X
 - We look at the next token a
 - And choose the production shown at [X,a]

• We use a stack to keep track of pending non-terminals
• We reject when we encounter an error state
• We accept when we encounter end-of-input
initialize stack ← <S $> and next
repeat
 case stack of
 <X, rest> : if T[X,*next] == Y₁…Yₙ
 then stack ← <Y₁…Yₙ rest>;
 else error();
 <t, rest> : if t == *next++
 then stack ← <rest>;
 else error();
 until stack == <>
LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

ACCEPT
Constructing Parsing Tables

• LL(1) languages are those defined by a parsing table for the LL(1) algorithm where no table entry is multiply defined

• Once we have the table
 - The parsing is simple and fast
 - No backtracking is necessary

• We want to generate parsing tables from CFG
If $A \rightarrow \alpha$, where in the line of A do we place α?

- In the column of t where t can start a string derived from α
 - $\alpha \rightarrow^* t \beta$
 - We say that $t \in \text{First}(\alpha)$

- In the column of t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A t \delta$
 - We say $t \in \text{Follow}(A)$
Computing First Sets

Definition

\[\text{First}(X) = \{ t | X \Rightarrow^* t \alpha \} \cup \{ \varepsilon | X \Rightarrow^* \varepsilon \} \]

Algorithm sketch

1. \(\text{First}(t) = \{ t \} \)
2. \(\varepsilon \in \text{First}(X) \) if \(X \Rightarrow \varepsilon \) is a production
3. \(\varepsilon \in \text{First}(X) \) if \(X \Rightarrow A_1 \ldots A_n \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
4. \(\text{First}(\alpha) \subseteq \text{First}(X) \) if \(X \Rightarrow A_1 \ldots A_n \alpha \)
 and \(\varepsilon \in \text{First}(A_i) \) for each \(1 \leq i \leq n \)
Computing First Sets

Definition

\[\text{First}(X) = \{ t | X \xrightarrow{*} t \alpha \} \cup \{ \varepsilon | X \xrightarrow{*} \varepsilon \} \]

More constructive algorithm

1. \(\text{First}(t) = \{ t \} \)

2. For all productions \(X \rightarrow A_1 \ldots A_n \)
 - Add \(\text{First}(A_1) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_1) \).
 - Add \(\text{First}(A_2) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_2) \).
 - ...
 - Add \(\text{First}(A_n) \setminus \{ \varepsilon \} \) to \(\text{First}(X) \). Stop if \(\varepsilon \notin \text{First}(A_n) \).
 - Add \(\{ \varepsilon \} \) to \(\text{First}(X) \).
First Sets: Example

- Recall the grammar

\[
E \rightarrow TX \\
T \rightarrow (E) | \text{int} \ Y
\]

\[
X \rightarrow +E \mid \varepsilon \\
Y \rightarrow *T \mid \varepsilon
\]

- First sets

\[
\text{First(() } = \{ () \} \\
\text{First() } = \{ () \} \\
\text{First(int) } = \{ \text{int} \} \\
\text{First(+) } = \{ + \} \\
\text{First(*) } = \{ * \}
\]

\[
\text{First(T) } = \{ \text{int}, () \} \\
\text{First(E) } = \{ \text{int}, () \} \\
\text{First(X) } = \{ +, \varepsilon \} \\
\text{First(Y) } = \{ *, \varepsilon \}
\]
Computing Follow Sets

Definition

Follow(X) = \{ t | S \rightarrow^* \beta X \rightarrow^\delta \}

Intuition

- If X \rightarrow A B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
- Also if B \rightarrow^* \epsilon then Follow(X) \subseteq Follow(A)
- If S is the start symbol then $ \in Follow(S)$
Computing Follow Sets (Cont.)

Algorithm sketch

1. \$ \in \text{Follow}(S)
2. \text{First}(\beta) - \{\varepsilon\} \subseteq \text{Follow}(X)

 For each production \(A \rightarrow \alpha \ X \beta \)
3. \text{Follow}(A) \subseteq \text{Follow}(X)

 For each production \(A \rightarrow \alpha \ X \beta \) where \(\varepsilon \in \text{First}(\beta) \)
Computing Follow Sets (Cont.)

Definition

Follow(X) = \{ t | S \rightarrow^* \beta X \rightarrow\delta \}

More constructive algorithm

1. First compute the First sets for all non-terminals
2. If S is the start symbol, add $ to Follow(S)
3. For all productions Y \rightarrow ... X A_1 ... A_n
 • Add First(A_1) - \{\varepsilon\} to Follow(X). Stop if \varepsilon \notin First(A_1).
 • Add First(A_2) - \{\varepsilon\} to Follow(X). Stop if \varepsilon \notin First(A_2).
 • ...
 • Add First(A_n) - \{\varepsilon\} to Follow(X). Stop if \varepsilon \notin First(A_n).
 • Add Follow(Y) to Follow(X).
Follow Sets: Example

Recall the grammar

\[
\begin{align*}
E & \rightarrow T \ X \\
T & \rightarrow (E) \mid \text{int} \ Y \\
X & \rightarrow + \ E \mid \varepsilon \\
Y & \rightarrow * \ T \mid \varepsilon
\end{align*}
\]

Follow sets

\[
\begin{align*}
\text{Follow}(+) & = \{ \text{int}, () \} \\
\text{Follow}(*) & = \{ \text{int}, () \} \\
\text{Follow}(()) & = \{ \text{int}, () \} \\
\text{Follow}(E) & = \{ (), $ \} \\
\text{Follow}(X) & = \{ $,) \} \\
\text{Follow}(T) & = \{ +,) , $ \} \\
\text{Follow}()) & = \{ +,) , $ \} \\
\text{Follow}(\text{int}) & = \{ *, +,) , $ \}
\end{align*}
\]
Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in \text{First}(\alpha)$ do
 \[T[A, t] = \alpha \]
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do
 \[T[A, t] = \alpha \]
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do
 \[T[A, \$] = \alpha \]
Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well

• Most programming language grammars are not LL(1)

• There are tools that build LL(1) tables
Review

• For some grammars there is a simple parsing strategy

Predictive parsing (LL(1))

• Next time: a more powerful parsing strategy