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Abstract: Necessary and sufficient conditions for globally stabilizing linear systems with bounded controls are known. However, it 
has been shown in [5] that, for single-input systems, no saturation of a linear feedback can globally stabilize a chain of integrators of 
order n, with n > 3. In this paper, we propose a nonlinear combination of saturation functions of linear feedbacks that globally 
stabilizes a chain of integrators of arbitrary order. The appealing feature of the proposed control is that it is fairly easy to construct. 
It is linear near the origin and can also be used to achieve trajectory tracking for a class of trajectories restricted by the absolute on 
the input. 
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1. Introduction 

The  p r o b l e m  of  s tabi l iz ing l inear  systems with b o u n d e d  cont ro ls  has been  s tud ied  extensively (see 
[1,2,3]). Recent ly ,  in [4] f rom the po in t  of  view of  non l inea r  control ,  a ( smooth)  non l inea r  ( bounded )  
f e e d b a c k  was cons t ruc ted  to global ly s tabi l ize  all asymptot ica l ly  nu l l -con t ro l lab le  l inear  systems. A system 
is nu l l -con t ro l lab le  if every s ta te  of  the  system can be  dr iven to zero  asymptot ica l ly  using a b o u n d e d  
m e a s u r a b l e  control .  In  some cases,  a chain of  in tegra to rs  for  example ,  the  cons t ruc t ion  involved a 
compl i ca t ed  recurs ive  a r g u m e n t  which requ i res  one  to solve for a cer ta in  submani fo ld  of  the  s ta te  space.  
In  [5] it is shown tha t  a cer ta in  s imple  s t ra tegy,  namely  any b o u n d e d  funct ion of  a l inear  feedback ,  canno t  
possibly  global ly s tabi l ize  a cha in  of  in tegra to rs  of  o r d e r  n, for n > 3. 

In  this p a p e r  we p ropose  two b o u n d e d  f e e d b a c k  s t ra tegies  for a chain  of  in tegra to rs  of  a rb i t ra ry  order .  
The  a lgor i thm for cons t ruc t ing  the  b o u n d e d  cont ro l  law is fairly simple.  The  cont ro l  law is l inear  nea r  
the  or igin and  can easily be used  to achieve t ra jec tory  t racking  for a class of  t ra jec tor ies  res t r i c ted  by the  
abso lu te  b o u n d e d  on the  input .  

O u r  solu t ions  to this  l inea r  p r o b l e m  were  mot iva ted  by a more  gene ra l  non l inea r  s tabi l izabi l i ty  
p r o b l e m  (see [6]). In  the  non l inea r  set t ing,  the  previous  solut ions  to the  l inear  p r o b l e m  were  unab le  to 
assist  us. However ,  the  solu t ions  p r e s e n t e d  here  are  crucial  to solving the  non l inea r  p r o b l e m  solved 
in [6]. 
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2. Main result 

2.1. Global stabilization 

We start  with the following definition: 

Definition 1. Given two positive constants  L,  M with L _< M, a funct ion o- : E -+ E is said to be a finear 
saturation for (L ,  M )  if it is a continuous,  nondecreas ing  funct ion satisfying 

(a) s~r(s) > 0 for all s =~ O; 
(b) ~r(s) = s  when I s l < L ;  
(c) I~r(s)l _<M for all s e ~. 

In the subsequent  control  design, one can choose arbitrari ly smooth  functions out of  this class. 
Now consider  the l inear system consisting of mult iple  in tegrators  

2 1 = x  2 . . . . .  2 n = u .  (1) 

We are searching for a bounded  control  that  will globally asymptotical ly stabilize (1). Our  main  result  is: 

Theorem 2.1. There exist linear functions hi : R ~ ~ R such that, for  any set o f  positive constants {(L i, Mi)} 
1 for  i = 1 , . . .  n - 1, and for  any set o f  functions {¢ri} that are where Li  < M  i f o r i  = 1 , . . . , n  and M i < 2Li+ 1 

l inear sa turat ions  for {( Li, Mi)}, the bounded control 

u = - ~ . ( h n ( X )  + ~ _ , ( h ° _ , ( x )  + ' + ~ , ( h , ( x ) ) )  " ) 

results in global asymptotic stability for  the system (1). 

Proof.  Consider  the l inear coord ina te  t r ans format ion  y = Tx which t ransforms (1) into ~ = A y  + Bu 
where  A and B are given by 01 il 

A =  , B =  " . 
0 - "  0 i 

. . . . . .  

The  recursive na ture  involved yields a t rans format ion  character ized by 

i,  
Y n _ i  = j X n _  i where 

g=o j ! ( i - j ) !  

The  inverse of  the t rans format ion  is character ized by 

x . _ ,  = E ( -  1) '+j - y . - i .  
j=o 

A suitable control  law is 

u = - ¢ r , ( y ,  + ( ~ , - l ( Y , - ,  + " "  + % ( Y l ) )  " "  ) (2) 

which yields the closed loop system 

J3 l = y 2 +  . . .  + Y n - O ' ( y , , + o ' _ l ( Y , _ l +  - - .  +O- l (y , ) )  . . .  ), 

3)2 = y 3  + . . .  +Yn-O ' , , ( y , ,+o ' , , _ l ( y , , _ l+  "'" + c r , ( y , ) ) ' ' "  ), 

5~,,_1 =Yn- t r , , (Y , ,+o ' , , - I (Y , , - I  + . . .  +O- l (y l ) )  - . .  ), 

5~,, = --O'n(y n + O'n_,(yn_ l + . . .  +O- l (y l ) )  -" • ). 

(3) 
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We begin by considering the evolution of the state y..  Consider the Lyapunov function V n = y~. The 
derivative of V~ is given by 

12n = - - 2 Y n [ O ' n ( y  . + O ' . _ I ( Y . - I  + . . .  +Crl(Yl) ) . . .  )]. 

From Definition 1, condition (a) applied to ~r. and condition (c) applied to or._ 1 coupled with the fact 
1 1 that M._  1 < 2L. ,  we see that I2 < 0 for all y. ~ Q.  = {y.: l y. I -< ~L.}. Consequently, Yn enters Q.  in 

finite time and remains in Q.  thereafter. Further, because the right-hand side of (3) is globally Lipschitz, 
the remaining states Yl , . . . ,  Yn- t remain bounded for any finite time. 

Now consider the evolution of the state Y.-1. First observe that after y.  has entered Q.,  the 
argument of ~r. is bounded as 

i _ < L ~  l y , + c r , _ ~ ( y ~ _ l + " "  + ~ l ( Y l ) ) . . . ) l < ~ t n + M n  i . 

Consequently, after y,  enters Q,,  or, operates in its linear region from condition (b) of Definition 1. 
Then the evolution of y ,_  1 is given by 

Y n - 1  = - - O ' n - l ( Y n - I  + " '"  +O'1(Yl))"'" )" 

Using the same argument as for y. we can show that y ._  1 enters an analogous set Q._  ~ in finite time 
and remains in Q._  1 thereafter. Again, all of the remaining states stay bounded. This procedure can be 
continued to show that after some finite time the argument of every function ~r i has entered the region 
where the function is linear. After this finite time, the closed loop equations have the form 

Yl = - Y l ,  

YX = - -Y l  - Y 2 ,  

Yn = - - Y l  - -Y2  . . . . .  Yn" 

Clearly, the dynamics, after the prescribed finite time, are exponentially stable. [] 

The number of saturation functions required can be decreased by stabilizing the states in pairs rather 
than one at a time. We employ a slightly more restrictive class of linear saturation functions. 

Definition 2. Given two positive constants L, M with L < M, a function or : E ~ E is said to be a simple 
linear saturation for (L,  M)  if it is a continuous, nondecreasing function satisfying 

(a) s~r(s) > 0 for all s 4: 0; 
(b) or(s) = s  when Isl < L ;  
(c) Io'(s)[ = M  when Isl > M .  

Where before we needed n saturation functions, now we need one function for each pair of states. If 
the dimension of the state space is odd, we will need one additional saturation function for the 

1 additional state. Accordingly, define fi = ~n if n is even and h = ½(n + 1) if n is odd. 

T h e o r e m  2.2. There exist linear functions h i " ~ n  __. ~ such that for any set of  positive c o n s t a n t s  {(Li, M i )  } 

where Li < M  i for i = 1 . . . .  ,fi and M i < L i + l / ( 1  + ~/2) for i = 1 . . . .  ,fi - 1, and for any set of  functions 
{o'i} that are simple linear saturations for {(ti, Mi)}, the bounded control 

U = - - O h ( X  ) + O ' h _ l ( h h _ l ( X  ) + " '"  +Orl(hl(X)))"" ) 

results in global asymptotic stability for the system (1). 

Proof. Consider the same coordinate change as in the proof of the previous theorem. We will proceed in 
a similar manner as before, this time showing that the states y ,_  1, Yn enter within finite time and 



168 A.R. Teel / Stabilization and tracking [or multiple integrators 

thereafter remain in a region where the function ~ is linear. Since the differential equation is globally 
Lipschitz, the remaining states y~, . . . ,  y, 2 remain bounded. With ~r,~ operating in its linear region we 
can iterate to show that y,, 3, Y,-2 enter and remain in a region where ~ 1 is linear. Eventually, this 
leads to the conclusion that after some finite time, the closed loop equations have the form 

))1 = - - Y l ,  

Y2= --Yl--Y2, 

3~, = -Yl  - - Y 2  . . . . .  yn, 

which is an exponentially stable linear system. 
Consider the dynamics of Yn-1, Yn: 

Y ; n _ , = y . - c r ~ ( y n _ , + y . + o ~ _ l ( y ) ) ,  )~n =-~r~(y~ l + y n + ¢ ~ _ l ( y ) ) .  (4) 

To show that Yn-1, Yn enters a sufficiently small neighborhood of the origin we use the following 
Lyapunov-like function: 

W(y~_ 1 y . ) =  I 2 I 2 , ~ Y . - I  + ~Y~. (5 )  

This positive definite function is only a Lyapunov-like function because there will be points in the state 
space where I,V > 0. However, we will show that the integral of W is negative over known closed form 
solutions of (4) in the region where ¢~ is saturated. Further, when it is possible that ~r~ is not saturated, 
W is strictly decreasing (outside a neighborhood of the origin). 

Consider the following regions of the state space: 

region I: Yn- 1 + Y~ > M~ + M~_ 1, 
region II: y~_l + y .  < -M~ - M ~ _  1, 
region I lk  ] Y~- 1 + Y. I -< Ma + M~_ 1. 

We begin by showing that any bounded initial condition in region I yields a trajectory that enters region 
III in finite time. Observe that in region I, (4) is given by 

f._l=yn-M~, f~=-M~. 

Consequently, the closed form solution of the trajectories in region I are given by 

y . _ l ( t )  = y ._ l ( t o )  + y . ( t o ) t  - l~M~t2-M~t,  y~(t) = y ~ ( t o ) - M  d .  

Combining, we have 

y~ l(t)  +y~(t )  =y~_l ( to )  +yn(to) - 2 M ~ t + y ~ ( t o ) t -  ~M~tl 2. 

We assume that y._  ~(t o) + y.(t  o) > M~ + M~ _ l and we solve for a t b such that 

Y. l(tb) +Y.( tb)  = M ~ + M ~ _ I .  

Using the quadratic formula it is straightforward to show that such a t b exists and is finite and positive. 
The same argument holds for region II by symmetry. 

Now consider an initial condition such that 

y ._ l ( to )  + y.( to) = Ma + M~_ 1. 

To enter region I, we must have j,._ l(to) > - p . ( t  o) since the boundary of region I is a line of slope - 1. 
This implies 

y . ( to )  > 2M~, y ._ l ( to )  < -M~ +M~_ 1. 
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Assume we enter region I. We show that we return to region III in finite time t b > 0 and that 
W(t b) - W(t o) < 0. From the discussion above for trajectories in region I and since Yn- 1(to) + Yn(to) = 
Yn-  l ( tb  ) + Yn(tb ), it follows that 

7M~t 2 [2M _ y , ( t o ) ] t b = O  

This implies 

2 
tb= ~ ( y . ( t o )  -- 2M~) 

which is positive because yn(to) > 2Mn. Now consider 

y2 W(/b) -- W(to) = ½(Y~_l(/b) +y2(tb)  --Y~_l(to) - n(to)). 
1 2 t First consider ~(yn_ 1(b) -- Y~- 1(to)) . Observe that in terms of y~_ l(to), 

2 
t b = - - ~ ( - y . _ l ( t o )  + M ~ _ I - M h ) .  

Evaluating the closed form solution for y~_ 1 at t b yields 

Y,_l(tb) = --yn_l(/o) + 2(M~_ 1 - M n ) .  

A straightforward calculation then shows that 

y~_l(tb ) -- 2 Y~_l( to) = 4Yn_l( to)( M n - M n _ I )  + 4(M,~ - M,~_ l) 2. 

Since y,_ 1(to) < - M a  + Mn_ 1 and Mn > Mn_ 1, it follows that y~_ ~(t b) - y~_ ~(t o) < 0. 
Now consider 1 2 2 (yn ( tb ) -  y2(to)). Evaluating the closed form solution for y,  at t b yields 

y,( tb)  = -yn( to)  + 4M~. 

A straightforward calculation then shows that 

Y~(tb) --Y2(/o) = - 8 y , ( t o ) M ~  + 16M~. 

Since y,(t  o) > 2M~, it follows that y2n(t o) - y2n(t o) < O. 
By symmetry, the same analysis holds for trajectories originating on the boundary of region II and 

entering region II. 
Now consider trajectories in region III. We have 

I ~ = y , - I [  Y, -O'~(Yn_I + y, + o',~-l(y))] + Yn[--O'r~( yn_l + Y, + O',~-I(Y))] 

= ( Y ~ - I  +Y~)[--O'~(Y,-I +Yn +tr~-I(Y))] +Y~-IY~ 

~- (Yn--1 +Yn)[Yn-1 +Yn --orFl(Yn--I +Yn + O'h- - l (Y)) ]  -- (Yn-1 +yn)2+yn- lYn  

= ( Y n - l + Y n ) [ Y n - l + Y n - - O ' ~ ( Y n - l + Y n + O ' h - l ( Y ) ) ] - - ½ ( Y n - l + Y n )  2 -- 2n-X---2nly2 l y 2  

l y 2  -- ½ y 2 -  1 2 
- ~(Yn_l+yn)  • 

Consider the level set W = ~M,~_~ 2 1. On this level set, a circle of radius M~_ 1 in the y~_ 1, Yn plane, we 
have 

M~-I  <- ]Yn-l +YnJ <- v~M~_ 1. 
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Consider l y , , - l+y , , I  =kM~ i where k e [ 1 , ~ / 2 ] . T h e n  

1 ~ I )2 
W < - 2 M ~ , - , - ~ . ( k M ~  i +kMi,: , = - ( ' 2 - k +  '~k:)Ms ,. 

Since k ~ [1, ~/2], W_< 0. Since W is bounded by a quadratic negative definite function plus a linear 
perturbation in region III, 1~ < 0 outside of the level set W = ~ ~My 1 and inside region III. Further, if the 
trajectory leaves region III, it returns in finite time and at a lower energy level W. Consequently, for any 
e > 0, the trajectories of Y, J, Y, enter a circle of radius M~+ ~ + e in finite time and remain in that 
circle thereafter. If M,~ 1 is chosen so that 

L ; ~ = ~ / 2 ( M ~ _ I + e ) + M ~  l 

(i.e. L~ > M~_ l(~- + 1)), then cr~ operates in its linear region after some finite time. Once ~ becomes a 
strictly linear function we have 

Yn-3=Yn  2 - - O ' h - I ( Y n - 3 + Y n - e + O ' h - 2 ( Y ) ) ,  Y n - 2 = - - O h  l (Yn_3+y, ,_2+O'r~  2 (Y) )  

and the same analysis applies to show that Y~-3, Y~-2 eventually enters a sufficiently small neighbour- 
hood of the origin. The iterative process continues until it can be shown that, after some finite time, 
every saturation function is operating in its linear region. After this time, the dynamics of (1) are those of 
an exponentially stable linear system. [] 

Remark. The results of [5] indicate that it is not possible to further reduce the number of saturation 
functions by trying to stabilize three states at a time. 

2.2. Restricted tracking 

Consider the nonlinear system 

j? l=x2 . . . . .  k = ( r , + l ( u ) ,  y = x  I. (6) 

Here o-,+1 is a linear saturation for (L,+~, M,+]).  The task is to cause y to track a desired reference 
trajectory Yd given by Yd, Yd . . . . .  y~n). 

Corollary 2.1. I f  I y ( d n ) ( t )  [ < L n  + 1 - ~ for  all t > t o and for  some e > 0 then there exist linear functions 
hi :E ~ ~ ~ such that for  any set o f  positive constants {(Li, Mi)} where M~ < e, L i < M i for  i = 1 . . . . .  n and 
Mi >1 7Li+ for  i = 1,. . . ,  n - 1 and for  any set o f  functions {~} that are linear saturations for {( L i, Mi)}, 
the feedback 

u + + ' • .. ) 

where £ is defined as xi = xi - y~i- 1) for  i = 1 . . . . .  n, results in asymptotic tracking for  the system (6). 

Proof. In terms of £, (6) becomes 

Xl=)~ 2 . . . . .  Xn=--y(dn)"~orn+l(U). 
Observe that, with the specified control law, if we choose M, < e, then (r n + 1(') is always operating in its 
linear region so the closed loop system becomes 

)71 =:72, - . . ,  3~n = -°vn(hn( '~)  "+'°'n-l(hn-l(-~) +- "'" q-°Vl (h l ( )~ ) ) ) "  )' 

1 for i = 1, n - 1 and ~ ( ' )  satisfies Definition 1, then we have the Now if {(L i, Mi)} satisfy M i < 2Li+ 1 . . . .  
conditions of the stabilization theorem of Section 2.1. Consequently, £ asymptotically approaches zero. 
In turn, this implies that y( t )  asymptotically approaches Ya(t). [] 
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For  a result with fewer saturat ion functions we assume, for (6), that  on+ t is a l inear saturat ion for 

(L,~+ l, M,~ + 1). 

Corol lary 2.2. I f  [ Y~n)(t)l < L~+ 1 - e for  all t > t o and for  some e > 0 then there exist linear functions 
h i  : ~ n  ~ ~ such that for  any set o f  positive constants {(Li, Mi)} where Ma < e, L i < M i for  i = 1 , . . . ,  fi and 
M i < L i + l / ( 1  + v ~ )  for  i =  1 . . . . .  fi - 1 and for  any set o f  functions {~ri} which are simple linear 
saturations for {( Li, Mi)}, the feedback 

u + . . .  . . . .  ) 

where £ is defined by £i = xi - Y(d i-  1) for  i = 1 . . . . .  n, results in asymptotic tracking for  the system (6). 

3. Conclusion 

Two simple bounde d  control  algorithms have been  presented  to globally stabilize a chain of  
integrators.  The  algori thms are implemented  with saturat ion functions that are linear near  the origin and 
can be chosen arbitrarily smooth.  The  control  laws naturally extend to the task of  trajectory tracking 
using bounded  controls.  
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