
Deadlocks

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems
Uppsala University

Spring 2007



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Outline

1 Recall the problem? Quickie on Synchronisation
Synchronisation
Solutions & Tools
Problem

2 Characterizing Deadlocks
Resources
Resource Allocation Graph
Conditions

3 Handling Deadlocks
Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Deadlock Recovery



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Synchronisation

Example (El Classico)

producer-consumer on shared memory systems

Critical-section problem

n processes share data

each process has a critical section where the shared data
are updated

Make sure that only one process a a time is in the critical
section



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Synchronisation

Process structure

for(;;){ //Many times
[Ask for permissions to enter critical section]
// Do some work
[Exit section] // Clean up, notify others
// Do some work outside the CS

}

Requirements for a solution

Mutual exclusion

Progress

Bounded waiting



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Solutions and Tools

Peterson’s Solution

Catch on that for yourself.
Recall that it is in case of exactly 2 processes

Hardware tools

Test-And-Set(x)
TAS sets x to TRUE and returns the previous value,
atomically

Compare-And-Swap(x,y,t)
CAS swaps the content of x with y, if t is TRUE, atomically

Semaphores

Catch on for yourself. Invented by Dijkstra



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Example (A bank account)

Balance b = 0 sek .
Person A does a deposit of 100 sek.
Person B does a deposit of 200 sek
⇒ Balance sould be 300 sek.

A Balance b B
0 load R4, b

load R2, b 0
add R2,#100
store b, R2 100

add R4,#200
200 store b, R4

Solution: Synchronisation (Semaphores,Monitors,Retry loops,...)



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Main Problem

The programmer must use the semaphores correctly!!

Example (mutex semaphores S and Q)

P1 P2

wait(S) wait(Q)
wait(Q) wait(S)

... ....
signal(Q) signal(Q)
signal(S) signal(S)

Leads to deadlock: Both P1 and P2 are waiting for each other
Additionally, starvation may occur if semaphores are incorrectly
implemented.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Resources

In shared memory systems, synchronisation deals with CPU
allocation with respect to ...memory!

Other types of resources: CPU, disks, tapes, files, ...memory.

Each resource type may have a different number of instances
(example: 2 CPUs, 3 disks, N buffer places...

but instances may or may not be equivalent (e.g. printers on
different floors).



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Resources

To protect against races, a resource may be

1 requested before use, waiting until it is available.
Open file, allocate memory, move to ready queue...

2 used
3 released after use.

Close file, deallocate memory, terminate/wait...

Deadlock

Arises when two or more processes wait for each other, and the
only way out is if one releases a resource another is waiting for.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Resource Allocation Graph

A graph

a set of vertices υ

a set of edges ǫ

System Resource Allocation Graph

Active Processes P = {P1, P2, . . . , Pn} (Circles)

Resource Types R = {R1, R2, . . . , Rm} (Boxes)

Request edges (Pi→Rj )

Assignment edges (Rj→Pi )

Number of instances per resource type



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Cycle in the Graph?

Deadlock?

No cycle ⇒ No process is
deadlocked.

If cycle, deadlock may exist



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Cycle in the Graph?

If each resource has ONE instance
cycle ⇒ deadlock

Each process involved in the cycle is deadlocked

Both necessary and sufficient condition for deadlock

If each resource has SEVERAL instance
cycle ; deadlock

Necessary but not sufficient condition for deadlock



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

RAG example

P1→R1→P2→R3→P3→R2→P1

P2→R3→P3→R2→P2

P1, P2, P3 are deadlocked



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

RAG example

P1→R1→P3→R2→P1

Not in deadlock state.

Important because we then can
deal with deadlocks (Apply
algorithms, induce choice,...)

p4 may deallocate R2



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Conditions

Mutual exclusion

At least one resource must be nonsharable
(only one process can use it)

Hold and wait

At least one process holds at least one resource and waits for more
resources which are held by other processes

No preemption

Only the process holding a resource can release it.

Circular wait

A set of processes are waiting for resources held by others in a
circular manner
< P0, ..., Pn > where Pi waits for a resource held by Pi+1[n].



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

How do we proceed?

1 Make sure they never occur
deadlock prevention
(make sure at least one of the conditions above never hold)
deadlock avoidance
(keeping more information about processes, allocate
resources so that deadlocks cannot appear)

2 Deal with them
deadlock detection
deadlock recovery (work in pair)

3 Ignore them!
if they don’t appear too often, it’s cheaper to restart the

system/processes



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Prevention

Idea : Make sure one of the conditions is never satisfied.

Mutual exclusion

Difficult, since some resources cannot be shared (e.g. CPU).
For some resources it works fine (e.g. read-only files).



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Prevention

Hold and wait

Make sure that when a process requests a resource, it doesn’t
hold any other resources.

allocate all resources before starting
difficult to predict, waste of resources (low utilization)

allow resource requests only when the process has none
in some cases degenerates to the previous (e.g. printing files from two

CDs directly after each other).

Risk for starvation for "popular" resources.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Prevention

No preemption

Preempt (force release) allocated resources.

Release all

If the process holds a resource, requests another, and can’t get
it immediately, release all its resources (and have it wait for them
all) - cf process scheduling!

Release when waiting

If the requested resources are not available, but allocated by a
process which is waiting for some other resource, steal the
resource (deallocate from waiting, allocate to requesting) and
have the original holder wait for also this resource.

Solutions work for some resource types (e.g. CPU, memory - easy to store

and reload state) but not for others (e.g. printers!)



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Prevention

Circular wait

Make a total ordering (<) of all resource types, and only allow
requests in this order:

If a process has R1 and requests R2, allow only if R1 < R2

(otherwise must deallocate R1 first).

If several instances of the same type are needed, must
allocate all together.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Avoidance

Deadlock prevention can lead to low resource utilization and
reduced throughput.

If the system knows which resources will be requested by each
process, and in which order, the system can order the requests
so that deadlocks can not occur.

Yet difficult to describe, we could require extra information, to
take better decision.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Avoidance

Easiest solution: each process declares the maximum number
of each resource type it will need (e.g. put in the PCB).

At each request, the system dynamically checks the
resource-allocation state to make sure the circular wait
condition will not be satisfied if the request is granted.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Avoidance – Safe state

Algorithm idea

preserve a safe state of resource allocations.

safe state: if all processes can be given their maximum
resource allocation (in some order) and avoid deadlock.
The order of allocations is a safe sequence:
< P1, P2, ..., Pn > is a safe sequence for the current allocation state if

for each Pi , its maximum resource requests can be satisfied
using its current resources plus the resources held by all Pj

where j < i.

In order to use the resources of Pj , Pi may have to wait until they
terminate, but Pi can get its resources!

When Pi terminates, Pi+1 can get its resources, etc.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Avoidance – Safe state

If there is no safe sequence, the state is unsafe. An unsafe
state may lead to deadlock, but doesn’t have to. A safe
sequence never leads to deadlock.

Refined algorithm idea

Allow only allocations which lead to a safe state.

a process which requests a resource which is available
may have to wait!

Thus, the resource utilization may be less than optimal -
but there will be no deadlocks.

Concrete algorithm

The Banker’s Algorithm (section 7.5.3).
Never allocate the cash so customers can’t get all they need.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Detection

Need both detection and recovery.

Detection algorithm are quite complex
Take time and resources.

Typically too expensive to do at each allocation

Run periodically or when CPU utilization goes down (which
could be an indication of a deadlock).

How often? Depends on how often deadlocks appear: often
means we should check frequently, otherwise the set of waiting
process will grow and the cost of recovery will be larger.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Detection

One instance of each resource

We can use resource allocation graphs (or wait-for graphs
constructed from these) and check for cycles.

Need to maintain the RAG/WFG, and periodically invoke an
algorithm: Overhead.

More instances

Use variant of Banker’s algorithm (sec 7.6.2).



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Recovery

In the detection phase, we found which processes were
involved in the circular wait.

Idea
By terminating processes, their resources are reclaimed by the
system
⇒ the deadlock disappears

Abort all deadlocked processes
Very expensive, since many processes will have to recompute what

they had done.

Abort one process at a time until deadlock is broken
Overhead: after each termination, re-run detection algorithm.



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Recovery – Process Termination

Both methods may result in e.g. inconsistent data in files.

If we abort one at a time, we must also consider which process
to terminate (and at each stage) depending on the cost.

Example considerations:

Process priority - especially if users pay to get priority

Accumulated runtime - shorter runtime means less
recomputations

Current resource allocation - number (many means more
resources will be returned to the system) and type (e.g.
preemtable?)

Future resource requirements



Recall the problem? Quickie on Synchronisation Characterizing Deadlocks Handling Deadlocks

Deadlock Recovery – Resource preemption

Idea

Instead of terminating process,
Try preemting resources (by force releasing) until deadlock is
broken.

1 Selecting a victim:
Which resources? Which processes?

⇒ minimize costs.
2 Rollback:

The process must be able to continue running normally
May require backing the process to a safe state

safe state computation is difficult⇒ Total roll back.

3 Starvation:
Avoid preempting/rolling back the same process again and again - cf

priority scheduling and cost considerations.


