
Memory Management

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems
Uppsala University

Spring 2007



Operating Systems

Process Management

Memory Management

Storage Management

Compilers

Compiling process &
Lexical analysis

Parsing

Semantic &
Code generation



Recall – Memory Management

Which processes and data to move in and out memory

Allocating and deallocating memory space as needed

Keeping track of which parts of memory are currently being
used and by whom



Considerations Address Binding Memory Allocation

Outline

1 Considerations
Memory is central
Speed
Protection

2 Address Binding

3 Memory Allocation
Fixed-sized partition
Variable-sized partition
Algorithms
Fragmentation



Considerations Address Binding Memory Allocation

Typical:
1 Fetch instruction form MEM
2 Decode instruction
3 Fetch eventual operands from MEM
4 Execute instruction
5 Store eventual results to MEM

But for the MEM: stream of addresses.

No difference between data and instructions

Hardware: CPU - MEM - IO

Registers+MEM ⇐⇒ CPU

No instruction with disk address
⇒ All must be first brought to MEM



Considerations Address Binding Memory Allocation

Speed considerations

Register: 1 cycle (1 ns)

Mem (via Bus & transactions): 10 - 100 cycles (100 ms)

⇒ CPU must stall (if no instruction scheduling, cf DARK2)

⇒ Cache



Considerations Address Binding Memory Allocation

Speed, ok, but Need of Protection

Speed, ok, but need for protection
(User process shouldn’t interfer with each others)

Idea
Each process has a separate memory space,
i.e. a range of valid addresses



Considerations Address Binding Memory Allocation

Simple example

Example: 2 registers - base & limit

HW checks every address. If problem, trap.

Prevents user from touching others user space or OS
space.

Base and limit placed in PCB.

Registers loaded by OS only (since privileged instruction)

⇒ OS = “superpower”



Considerations Address Binding Memory Allocation

How do we bring a program in MEM?

Programs are typically on disk as executable files
and must be brought to MEM.

Input Queue

Processes on disk waiting to be brought into MEM

Cf. analogy with the ready queue.



Considerations Address Binding Memory Allocation

Translation steps

Each step: more specific translation

If translation at compile-time:
absolute code

If translation as run-time: done by
MMU



Considerations Address Binding Memory Allocation

Example

Relocation register (base register)

Used to relocate addresses after OS space
(protection for that latter)

Address a becomes a + x but OS can vary in size (due to
buffers,. . . ) ⇒ x in register (dynamic relocation) added to all
addresses.



Considerations Address Binding Memory Allocation

Saving Space

Dynamic loading
Do we need to load everything? No, just when needed.
If routine is needed, check if loaded. If not, loads the
routine, stored on disk as relocatable load format
Advantage: If never used, never loaded (example: error
routines)
No special hardware support, up to programmers to use it
smartly

Dynamic linking
If static: Embrace system libs in all programs ⇒ Programs
are bigger
Stub (Description page 281)
Extension to library updates (bug fixes)



Considerations Address Binding Memory Allocation

Saving More Space - Swapping



Considerations Address Binding Memory Allocation

Saving More Space - Swapping



Considerations Address Binding Memory Allocation

Saving More Space - Swapping example

Example

User process: 10 MB

Backing store: standard disk with transfer rate of 40 MB/s

Latency: 8ms

⇒ Swap time = 258 ms

Swap in and out ⇒ Total swap time ≈ 516 ms

If RR, quantum ≫ 0.516 s



Considerations Address Binding Memory Allocation

Saving More Space - Swapping

Swap is slow ⇒ Swap the necessary

i.e. what the process IS using and not MIGHT BE using.

Other constraint: Process must be idle

If swapped out, MEM reclaimed to another process, so should
not be waiting for IO

Solutions:

Never swap a process with pending IO

Execute IO into OS buffers only
(Transfer buffers to process mem, when swapped in)



Considerations Address Binding Memory Allocation

Saving Even More Space

What about the OS? Can we reclaim some of its space?

Recall the OS space is protected, for example, with the
relocation register.

But can be used to dynamically allow OS size to change.

What to toss? OS can grow & shrink: OS buffers, code for
device drivers, . . .

transcient code: comes & goes as needed



Considerations Address Binding Memory Allocation

Fixed-sized partition

1 partition - 1 process

Split memory in fixed size partitions, give one to each process.

When processes terminate, memory is freed and can be
reused by other processes.

Problem: Degree of multiprogramming is limited to the number
of partitions



Considerations Address Binding Memory Allocation

Variable-sized partition

Recall that processes waiting to be swapped in form the input
queue (on disk).

OS checks mem requirements for processes

Job Scheduling: Input queue is sorted with an algorithm (cf
CPU scheduling)

Take the first one or skip down the list to find one where mem
requirements can be met

Risk? Starvation



Considerations Address Binding Memory Allocation

Variable-sized partition

Note: Memory is contiguous



Considerations Address Binding Memory Allocation

Algorithms

First-fit

Allocate the first hole that is big enough

Searching stops as soon as hole found

Best-fit
Allocate the smallest hole that is big enough

⇒ smallest leftover hole

Worst-fit

Allocate the largest hole

Searching over the entire list (unless list is ordered)

First-fit & Best-fit ≥ Worst-fit. First-fit is faster than Best-fit.
But First-fit & Best-fit lead to external fragmentation



Considerations Address Binding Memory Allocation

Fragmentation

Internal

space within an allocated block of memory is unused
(the block is larger than necessary)

External

unallocated blocks of memory are unused because they are
each too small, although the sum of their sizes would be usable.



Considerations Address Binding Memory Allocation

Variable-sized partition

Note: Memory is contiguous



Considerations Address Binding Memory Allocation

Dealing with Fragmentation

Avoid external fragmentation: Compaction(only if dynamic relocation)

Cost?

Permit non-contiguous address space ⇒ Paging

Note: What about fragmentation of backing store when
swapped out? Too slow to think about compaction!!


