Operating Systems & Compilers

Summing up

Frédéric Haziza <daz@t . uu. se>

Department of Computer Systems
Uppsala University

Spring 2007






SILBERSCHATZ
GALVIN
GAGNE

THE ESSENCE OF
COMPILERS



¥ A. Silberschatz, P. B. Galvin, G. Gagne.
Operating System Concepts, Seventh Edition.
Wiley, 2002 (sBN: 0-471-69466-5)

¥ R. Hunter.
The Essence of Compilers.
Prentice—HaII, 1999 (sBN: 0-13-727835.7)

¥ Course Homepage.
http://www.it.uu.se/edu/course/homepage/oskomp/vt07.



ConﬁCiUS, 5" century BC

| hear and | forget,
| see and | remember,
| do and | understand.

@ You take your own notes @ 2 labs (mandatory)

@ Those slides are no @ 4 handins (bonus)
placeholders for lecture
notes



Operating Systems
000

Providing the environment for programs to run

@ To increase CPU utilization: multitasking
@ 2 process schedulers

@ Control is eventually switched back to the system through

@ an interrupt (hardware error detection)

@ atrap (software-generated interrupt) or

@ a system call (interface to ask the OS to perform privileged
tasks



Operating Systems
(o] le}

Process Management

Resources (CPU time, memory, files, 1/0) are either
@ given at creation or
@ allocated while running.

Definition (Process)
Unit of work in the system. For both user and system.

Creation / Deletion of processes

Suspending / Resuming process

°
°
@ Mechanism for process synchronization
@ Mechanism for process communication
°

Mechanism for deadlock handling
(prevention, avoidance, reparation, ...)



Operating Systems
[efe] ]

= PCB, states, transitions, ready queue, device queue, context
switch IPC, message passing, shared Memory, threads,
responsiveness, user/kernel-threads, CPU burst cycles,
preemptive vs cooperative, throughput, turnaround time,
response time, waiting time, FIFO, SJF, Priority Scheduling,
RR, Multi-level queues, starvation, aging, time quantum,
symmetric/asymmetric processors, processor affinity, localities,
semaphores, locks

Deadlock: Resource Allocation Graph, Prevention, Avoidance,
Detection, Recovery



Operating Systems
L o]

Memory Management

@ Keeping track of which parts of memory are currently being
used and by whom

@ Which processes and data to move in and out memory
@ Allocating and deallocating memory space as needed



Operating Systems
oe

= Address binding, relocation register, linking, dynamic
loading, input queue, contiguous memory, xxx-fit algorithms,
fragmentation, compaction, paging

Virtual memory: Paging, Segmentation, demand-paging,
logical space, physical space, pages, frames, page table, frame
table, Page Table Base Register, TLB, shared pages, reentrant
code, lazy swapping, page-fault, page replacement algorithms,
modify bit, reference string, FIFO, OPT, LRU, LRU with
approximations, Belady’s anomaly, global vs local page
replacement, thrashing, working-set, page-fault frequency



Operating Systems
[ ]

Storage Management

@ File system
@ Disks
@ Protection and Security

=- done in the essay



Compilers
[ ]

Compiling Process & Lexical analysis

= Analysis stage, synthesis stage, translators, efficiency,
correctness, source code, machine code, intermediate
representation, lexical analysis, lexer, syntax analysis, parser,
semantic analysis, abstract syntax tree, regular expressions,
grammars, Finite automaton



Compilers
L]

Parsing

= tokens, Context-free grammars, LL(k)/LR(k) grammars,
productions, derivation, terminals/non-terminals, lookahead
symbol, Parse tree, abstract syntax tree, top-down, bottom-up,
recursive-descent, shift-reduce, left-factoring, parse table,
left-recursion elimination



Compilers
[ ]

Semantic analysis & Code Generation

= scope, type, fault-tolerance, symbol table, stack/hashtable/...
implementations, name collisions

= three-address code, P-code, Bytecode, JVM, stack, implicit
operands, CISC vs RISC, instruction selection, register
allocation, liveness, graph-coloring register allocation,
optimizations



